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Minor Summation Formula of Pfaffians and Schur Function Identities

By Masao ISHIKAWA *)’***) and Masato WAKAYAMA **)’****)

(Communicated by Kiyosi ITS), M. J. A., March 13, 1995)

1. Introduction. In the paper [1], we ex-
ploited a minor summation formula of Pfaffians.
The prototype of this formula is found in [6]. The
merit of our formula is that, by taking various
antisymmetric matrices, we obtain considerably
various formulas on the summations of minors of
a given rectangular matrix. Our motivation was
in the use of the enumerative combinatorics and
combinatorial representation theory. (See [9].) We
are expecting the utility of this formula on va-
rious objects in this area. Particularly we think
that the applications on the Schur function identi-
ties are important and we studied them intensive-
ly in [2]. There we obtained new proof of the for-
mulas which are usually called Littlewood’s for-
mulas. Typical examples of Littlewood’s formulas
are the followings.

(1.1) (-- 1 s, (xl Xm)

II (1 xx),
li<jm

(1.2) s (xl,..., Xm)

H (1 xi) H (1 xx.),
i=l 1 i<jm

(1.3) X (-- 1)2 s (Xl, Xm)
2=(a+lla)

fl (1 xx.).
li<j<:m

(See [4].) For the notation see Section 2. In this
paper we state some new results which are

obtained after [2]. The method we use owes to [2],
but we develop the method and exploit certain
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new identities which involve both the Schur func-
tions and (ebyev’s polynomials. The main re-
sults of this paper are Theorems 3.1, 3.2 and
3.3. In the process of deriving these identities,
the argument on the relation between (Sato’s)
Maya diagram and Murnaghan-Nakayama’s for-
mula on Young diagram has a crucial role.

2. Basic notation and a summation formula.
In the paper [1] we exploited a minor summation
formula of Pfaffians. Now we briefly review this
formula.

Let r, m, n be positive integers such that
r <_ m, n. Let T be an arbitrary m by n matrix.
For two sequences i-- (i, ,ir) and k=

Tix"’ir(k,..., kr), let Tu ,,...u, denote the sub-
matrix of T obtained by picking up the rows and
columns indexed by i and k, respectively.

Assume m --< n and let B be an arbitrary n
by n antisymmetric matrix, that is, B
(b) satisfies b bi. As long as B is a
square antisymmetric matrix, we write Bi=

R ’’’’" in abbreviation. One of theB..., for Bi -i...i,

main result in [1] is the following theorem. (See
Theorem i of [11.)

Theorem 2.1. Let rn < n and T (t) be
an arbitrary m by n matrix. Let m be even and B
(bi) be any n by n antisyrnmetric matrix with en-
tries b. Then
(2.1) pf(B,..m) det ( X...mT...) pf(Q),

lkl<..,<km<n
where Q is the m by m antisyrnrnetric matrix de-

fined by Q TBt T, i.e.

(2 2) Q bdet( , (1 _< i,j_< m).
lk<ln

We regard the Pfaffian pf(Ba)as certain
1...m

weights" of the subdeterminants det(T...). By
changing this antisymmetric matrix we obtain a
considerably wide variation of the minor summa-
tion formula.

Now we review some basic notation. The
reader can find these notation in [5]. A weakly
decreasing sequence of nonnegative integers /’=
(/, "’’, /m) with /--> --> /m -> 0 is called
a partition of ll 1 + + /m. The partition
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’= (, , ...) defined by = #(j’j >_ i}
is called the conjugate partition of . Let

(a) For each celln() (i-- 1) ..
x= (i,j) in 2, the hook-length of 2 at x is de-
fined to be h(x) 2--j + 2- i + 1. Suppose
that the main diagonal of consists of r=
p() nodes. Let cg 2- i and 2- for
1 <--i <_ r. We sometimes denote the partition
by (1,..-, r 151,.-., 5r) ([ 5), which
is called the Frobenius notation. If a is a non-
negative integer which doesn’t coincide with any
of cq’s, then let q(c, a) denote the number of
which are bigger than a. For example, 2
(5441) is the partition of 14 and p(2) 3. This
partition is denoted by 2 (421 1310)in the
Frobenius notation. If a (310) then q(a, 2)
1 and (c + l[c0 (421  10).

Let 2 (cq,..., cr l/5,..., /r) be a parti-
tion expressed in the Frobenius notation. Let a
and b be nonnegative integers such that a

ar and b :/:/5,...,/5, There are some k
and 1 such that ck > a > c+ and

+1. The partition 2 UI (a]b) is defined by
(2.3) U (alb)

(1’" ak’ a, ak+l,... r]
,8,..., fl,, b, fl,+l,... ,fir)-

For example, (421 ]310) L (0]2) (421013210).
The Schur functions are well-known sym-

metric functions, which are known as the values
of characters of the irreducible polynomial repre-
sentations of the general linear group on a torus.
But, here, we briefly review the definition of the
Schur functions. Put

x x 1
(2.4) T

\ Xm 1
for some fixed n. For a partition 2 "= (, -,
2m), let l (l,...__lm) 2 + c, where c (m

1, m 2, 0). So we have l > 12 ;>
> Im >-- O. Putjk= n-- lk for 1 <-- k<- m. Then
we set a(x,..., xm) aa+e(xl,..., xm) to be

m
(2.5) a+
When / 0, a is the famous Vandermonde de-
terminant and equal to the product IIi<m(X

x).
For a partition (,..., m), the Schur

function s s (x,..., Xm) corresponding to
is defined to be
(2.6) s aa+/a.

(See Chap. 1, Sec. 3 of [5].)
The polynomials defined by Tn(x) cos(n

arccos x) are called ebyev’s polynomials of the
first kind, and, on the other hand, the polyno-
mials Un(x) sin(n arccos x)/l --x2 are cal.
led ebygev’s polynomials of the second kind.
Both are known to satisfy the same recurrence
formula:

P+(x) 2xP(x) + P_ (x) O.
The first few polynomials are easily calculated
from the following recursion formula.

To(x) 1, Uo(x) O,
T+ (x) xT(x) + (x 1) U(x)
U,+(x) T,(x) + xU,(x).

3. Littlewood type fDrmulas. The following
lemma is the key lemma to evaluate the pfaffian
we treat.

Lemma 3.1.

(3.1) Qm(x, y)

Then

Let m be a positive integer and

m) mym)(Xm y (1 tmx
x- y 1 txy

(3.2) pf[Qm (xi, Xj)]li,j2m
II (x x) (1 txx).

<_i<j2m

4m+d-2-j)We fix T (xi <2m,og<am+a-2 in
this section. We assume d 2 for a moment. Let
B (/gk) be an antisymmetric matrix defined
through the equation below.

Ixkx’l(3.3)
Ok<l4m

2) (Xm ym)
(l+2ax+x (l + 2ay + y ) x-- y

If we apply Theorem 2.1 to Q given by the right
hand side of this equation, then we obtain the fol-
lowing formula from Lemma 3.1 with t- 0.

Prosition 3.1. Let m be a positive integer.
m m-k

(3.4) Z U+(a) Z s(aq,) (x, Xm)
k=0 r=0

H (1 + 2ax + x).
i=1

2i
If we put x =q in this formula and put

m , then we obtain a (combinatorial) proof of
the q-expansion formula of Jacobi theta functions

and , for example,

(3.5) Oi(u, v) 2 Z (-- 1)"q(+) sin(2n + 1)uu
=0

2q. q*")2 Qoq sin uu H (1 cos 2uu +
qa")where q e (Imv > 0) and Qo H, (1-
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Let m be a positive integer and let B = the formula (1.3). These are the known Little-

(fik)o,m-1 be an antisymmetric matrix of size wood type formulas. If we assume d 2 and
m in the ordinary means. Set bi to be the P(x) is symmetric, then we obtain the following
i-th row vector of B for 0 <-i<-m--1. The theorem.
matrix B is said to be (row-)symmetrically prop- Theorem 3.1. Let m be a positive integer.

ortional if the (m- 1 k)-th row is proportion- Then
al to the k-th. That is to say, there is some c
such that bin_l_k --Ckbk or bk --Ckbm_l_k for

each O<_k [-]- 1. Further B is called

row-symmetric if the bm__k b for 0 N i

[-1- 1, and B is called row-antisymmetric if

2 --1.

This notion has importance since it makes us

s (x,..., x)

(3,7) + 2 Tk(a) _, (--1) 21+q(’k-i)
k=l ,t=(a+ l[a)

X S(ol-)(x,..., xm)
m

(1 + 2axi + x) (1 xx).
i=1

2i
If we put x=q in this formula and we

use the q-expansion formula of Jacobi theta rune-

supposed to be antisymmetric matrix in the
ordinary means.

Let P(x) =Co+aPe+ +adz
d

be a
polynomial of degree d. P(x) is said to be

symmetric if a ad_i for 0N i<_ [-] and

possible to find all the subpfaffians pf(Bh.../,) of tion Q3, we obtain the following corollary.

B. From now on we assume that B is always Corollary 3.1.
1

h (x)
,l=(a+lia) x 1 q

(3.8)
gr__.(1 qr)[1

1-I__l (1 qr)
Let rn be a nonnegative integer. Then

E (-- 1)@+q’a’m’q I@+n(v(’m),P(x) is said to be antisymmetric if a ae_ (3.9)

for0 _<iN [d+ 1]
=(,+1,)

)[]
2 Then we have x II

1 m(+) II’_(1 q
h(x) q

Lemma 3.2. Let P(x) be a polynomial of de-
x(ol,n) 1 q H__ (1 q)

gree d. Let B (fl)o,+n- be the antisym- If d 3 and P(x) is antisymmetric, we

metric matrix of size (4m + d- 1) which satisfy obtain the following theorem. The case of d 3
and P(x) being symmetric essentialy reduces tok

Ok<l4m+d-2 y y

P(x)P(y) Q,n (x y) Then
The matrix B becomes (row-)symmetrically prop-
ortional for all m if and only if P(x) is symmetric
or antisymmetric. Further, if the polynomial P(x) is (3.10)
symmetric then B becomes row-symmetric, on the
other hand, if P(x) is antisymmetric then B becom-
es row-antisymmetric.

this case.
Theorem 3.2. Let m be a positive integer.

E (-- 1) s,(Xl,... Xm
m

+ Y_, (T(a) + (a- 1) U(a)}
k=l

[2 +2P () +q(,k-1)x E (--1)
=(a+2[a)
’k-1

From now we apply Theorem 2.1 to this T x {s(ol-)(x,..., x) so(l_)(x,..., Xm)}
m mand B given by (3.6). Basically it is possible to II (1 + 2ax + x) 1-I (1- xi) II (1- xx).find some sort of formula for each antisymmetric i=l i=l lKi<jKm

matrix B of the form (3.6) if it is row-symmetric If d 4 and P(x) is anti,symmetric, we
or row-antisymmetric. Here we investigate each obtain the following theorem.
formula for small d. When d- 0, we obtain the Theorem 3.3. Let m be a positive integer,
formula (1.1) from this argument. If d-1 and Then
P(x) is antisymmetric, we obtain the formula (3.11)
(1.2). It is easy to see that the case of d-- 1 and
P(x) being symmetric reduces to this case. If
d-- 2 and P(x) is antisymmetric, then we obtain

E ( 1)z-+()

S (Xl,..., Xm)
,l=(a+3la)

+ X U+x(a) E (--1)
k=l (or+3 Icr)

r ’k--1
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X {S,lO(01k_l)(Xl,..., Xm) S20(21k_l)(Xl,..., Xm)}
m

H (1 + 2ax + x) H (1 xx).
i=1 lijm
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