On Homology and Cohomology of Lie Superalgebras with Coefficients in Their Finite-Dimensional Representations

By Junko TANAKA
Department of Mathematics, Kyoto University
(Communicated by Kiyosi ITÔ, M. J. A., March 13, 1995)

In this paper we discuss explicit calculations of homology and cohomology of a Lie superalgebra. Complete results fore $\mathfrak{g l}(1,1)$ and $\mathfrak{z l}(2,1)$ are given in case the dimensions of representations are finite. Our result implies that for any $n \in$ $\boldsymbol{Z}_{\geq 0}$, there exists a finite-dimensional irreducible \mathfrak{g}-module V such that $\mathbf{H}^{n}(\mathfrak{g}, V) \neq\{0\}$, contrary to the case of finite-dimensional Lie algebras. This means that the Poincare duality, which is proved by S.Chemla [1] under a certain restrictive condition, does not hold in general in our case. For definitions and notations we mainly follow Kac [6].

1. Generalities. Homology groups $\mathbf{H}_{n}(\mathrm{~g}, V)$ of a Lie superalgebra $g=g_{\overline{0}} \bigoplus g_{\overline{1}}$ with coefficients in its representation space V are defined similarly as for a Lie algebra (cf. [7, p. 283]) and they can be obtained as $\operatorname{Ker} \partial_{n-1} / \operatorname{Im} \partial_{n}$ in the following complex (B, ∂) :

$$
0 \leftarrow B_{0} \stackrel{\partial_{0}}{\leftarrow} B_{1} \stackrel{\partial_{1}}{\leftarrow} B_{2} \stackrel{\partial_{2}}{\leftarrow} B_{3} \stackrel{\partial_{3}}{\leftarrow} \cdots, \quad B_{n}=\wedge^{n} g \otimes V,
$$

$$
\begin{aligned}
& \partial_{n-1}\left(X_{1} \wedge \cdots \wedge X_{n} \otimes v\right) \\
& \quad=\sum_{i=1}^{n}(-1)^{\imath+\eta_{i}^{\prime}} X_{1} \wedge \cdots \hat{i} \cdots \wedge X_{n} \otimes X_{\imath} v \\
& \quad+\sum_{k<l}(-1)^{k+l+n_{k}+n_{l}+\xi_{k} \xi_{l}}\left[X_{k}, X_{l}\right] \\
& \\
& \quad \wedge X_{1} \wedge \cdots \hat{k} \cdots \hat{l} \cdots \wedge X_{n} \otimes v
\end{aligned}
$$ where $\quad X_{i} \in \mathfrak{g}$ homogeneous, $v \in V, \xi_{i}=\left|X_{i}\right|$ $:=\operatorname{deg} X_{\imath}, \eta_{\imath}=\xi_{i}\left(\xi_{1}+\cdots+\xi_{i-1}\right), \eta_{i}^{\prime}=\xi_{i}\left(\xi_{i+1}\right.$ $\left.+\cdots+\xi_{n}\right)$, and the symbol \hat{i} indicates a term X_{\imath} to be omitted (cf. [8]). The Grassmann algebra $\wedge \mathfrak{g}$ here is defined as the quotient of the tensor algebra of g by a two-sided ideal generated by $\left\{X \otimes Y+(-1)^{|X| \mid \mathrm{Y\mid}} Y \otimes X \mid X, Y \in \mathrm{~g} ; \quad\right.$ homogeneous $\}$ and it is a \mathfrak{g}-module through a natural action:

$X \cdot\left(X_{1} \wedge \cdots \wedge X_{n}\right)$
$=\sum(-1)^{|X|\left(\xi_{1}+\cdots+\xi_{i-1}^{n}\right)} X_{1} \wedge \cdots \wedge\left[X, X_{i}\right] \wedge \cdots \wedge X_{n}$.
Then B_{n} 's are g-modules with $\rho_{n}(X)(\theta \otimes v)=$ $X \theta \otimes v+(-1)^{|x||\theta|} \theta \otimes X v\left(X \in \mathfrak{g}, \theta=X_{1} \wedge \cdots\right.$ $\left.\wedge X_{n} \in \wedge^{n} \mathfrak{g},|\theta|=\xi_{1}+\cdots+\xi_{n}, v \in V\right)$. This
action commutes with the derivation ∂, that is, $X \circ \partial_{n}=\partial_{n-1} \circ X$.

We appeal to the following lemmas to calculate the homology and the cohomology.

Lemma 1. Let \mathfrak{q} be a subalgebra of \mathfrak{g} such that its natural representation $\left.\rho_{n}\right|_{\mathfrak{a}}$ on the n-th chain B_{n} are all semisimple. Then, the homology $\mathbf{H}_{n}(\mathfrak{g}, V)$ can be obtained from a subcomplex $\left(B^{\mathfrak{q}}\right.$, $\left.\partial\right|_{B^{\mathfrak{9}}}$), where the n-th chain $B_{n}{ }^{9}$ for $B^{\mathfrak{q}}$ is the subspace of \mathfrak{q}-invariants in B_{n}.

The space $V^{*}:=\operatorname{Hom}_{\boldsymbol{C}}(V, \boldsymbol{C})$ has a natural \mathfrak{g}-module structure.

Lemma 2 (Duality). Let \mathfrak{g} be a Lie superalgebra and V a \mathfrak{g}-module. Assume that \mathfrak{g} and V are both finite-dimensional, then there are \mathfrak{g}-module isomorphisms between homology groups and cohomology groups as

$$
\mathbf{H}^{n}\left(\mathfrak{g}, V^{*}\right) \cong \mathbf{H}_{n}(\mathfrak{g}, V)^{*}
$$

2. Case of $\mathfrak{g l}(1,1)$. Fix a basis of the Lie superalgebra $\mathfrak{g}=\mathfrak{g l}(1,1)$ as follows:

$$
\begin{gathered}
H=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), C=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \\
X=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), Y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
\end{gathered}
$$

The elements H and C generate a Cartan subalgebra, which is equal to the even part $g_{\overline{0}}$ of g in this simplest case. Put $\mathfrak{g}_{1}=\boldsymbol{C X}$ and $\mathfrak{g}_{-1}=\boldsymbol{C} Y$. Then the odd part is $\mathfrak{g}_{\overline{1}}=\mathfrak{g}_{1}+g_{-1}$, and this gives a \boldsymbol{Z}-grading of g together with $g_{0}=g_{\overline{0}}$. Let $L(\Lambda):=\boldsymbol{C} v_{0}$ be a one-dimensional representation of $g_{\overline{0}}$ given by $H v_{0}=\lambda v_{0}, C v_{0}=c v_{0}(\lambda, c \in \boldsymbol{C})$ and Λ denote a pair (λ, c). For a subalgebra $\mathfrak{p}:=\mathfrak{g}_{\overline{0}}+\mathfrak{g}_{1}$, we extend $L(\Lambda)$ as a \mathfrak{p}-module through a trivial action of X. Then the induced module $\bar{V}(\Lambda):=\mathcal{U}(\mathfrak{g}) \otimes_{\mathfrak{p}} L(\Lambda)$ defines a representation of $\mathrm{g} \cdot \bar{V}(\Lambda)$ is irreducible if and only if $c \neq 0$.

We calculate the homology $\mathbf{H}_{n}(\mathfrak{g}, \bar{V}(\Lambda))$, which is isomorphic to $\mathbf{H}_{n}(\mathfrak{p}, L(\Lambda))$ by Shapiro's lemma on induced modules (cf. [7]). Put $X^{(k)}=X$ $\wedge X \wedge \cdots \wedge X \in \wedge^{k} \mathfrak{g}$ and

$$
\begin{gathered}
\alpha_{n}=X^{(n)} \otimes v_{0}, \beta_{n}=H \wedge X^{(n-1)} \otimes v_{0} \\
\gamma_{n}=C \wedge X^{(n-1)} \otimes v_{0}, \delta_{n}=C \wedge H \wedge X^{(n-2)} \otimes v_{0}
\end{gathered}
$$

Then, they generate the space B_{n} of n-th chains. Now we take $\mathfrak{g}_{\overline{0}}$ as a subalgebra \mathfrak{q} of \mathfrak{g} in Lemma 1. It is necessary that $c=0$ and $\lambda \in-\boldsymbol{Z}_{\geq 0}$ for a subcomplex $\left(B^{\mathfrak{q}},\left.\partial\right|_{B^{0}}\right)$ to be non-trivial. In that case, the complex ($B^{\mathfrak{q}},\left.\partial\right|_{B^{\natural}}$) in Lemma 1 for $V=$ $\bar{V}(\Lambda)$ can be written as

$$
0 \leftarrow \boldsymbol{C} \alpha_{-\lambda} \stackrel{\partial}{\leftarrow}\left\langle\beta_{1-\lambda}, \gamma_{1-\lambda}\right\rangle_{\boldsymbol{C}} \stackrel{\partial}{\leftarrow} \boldsymbol{C} \delta_{2-\lambda} \leftarrow 0,
$$

and the derivation ∂ is equal to zero. For calculation of cohomology groups we use the duality in Lemma 2 and $\bar{V}(\lambda, 0)^{*} \cong \bar{V}(-\lambda, 0)$. Thus we have the homology $\mathbf{H}_{n}(\mathrm{~g}, \bar{V}(\Lambda))$ and cohomology $\mathbf{H}^{n}(\mathrm{~g}, \bar{V}(\Lambda))$ as in the following theorem.

Theorem 3. In case $c=0$ and $\lambda \in-\boldsymbol{Z}_{\geq 0}$, $\operatorname{dim} \mathbf{H}_{n}(\mathrm{~g}, \bar{V}(\Lambda))=1(n=-\lambda,-\lambda+2), \quad$ and $=2(n=-\lambda+1)$. In all other cases, $\mathbf{H}_{n}(\mathfrak{g}$, $\bar{V}(\Lambda))=\{0\}$.

In case $c=0$ and $\lambda \in \boldsymbol{Z}_{\geq 0}, \operatorname{dim} \mathbf{H}^{n}(\mathfrak{g}, \bar{V}(\Lambda))$ $=1(n=\lambda, \lambda+2)$, and $=2(n=\lambda+1)$. In all other cases, $\mathbf{H}^{n}(\mathrm{~g}, \bar{V}(\Lambda))=\{0\}$.

In case $c=0$, the module $\bar{V}(\Lambda)$ is reducible and has a unique maximal proper submodule, say $I(\Lambda)$, and the quotient is a unique (up to isomorphisms) irreducible representation $V(\Lambda)$ of $\mathfrak{g l}(1,1)$ with the highest weight $\Lambda: V(\Lambda)=$ $\bar{V}(\Lambda) / I(\Lambda)$. By calculations, we get the following result (cf. [9]).

Theorem 4. Let $c=0$. If $\lambda \in-Z_{\geq 0}$, then, $\operatorname{dim} \mathbf{H}_{n}(\mathfrak{g}, V(\Lambda))=\operatorname{dim} \mathbf{H}^{n}(\mathrm{~g}, V(\Lambda))=1(n=-\lambda$, $-\lambda+1)$ and $\mathbf{H}_{n}(\mathfrak{g}, V(\Lambda))=\mathbf{H}^{n}(\mathfrak{g}, V(\Lambda))=$ $\{0\}$ otherwise.

If $\lambda \in \boldsymbol{Z}_{>0}$, then, $\operatorname{dim} \mathbf{H}_{n}(\mathfrak{g}, V(\Lambda))=\operatorname{dim}$ $\mathbf{H}^{n}(\mathrm{~g}, V(\Lambda))=1(n=\lambda, \lambda+1)$ and $\mathbf{H}_{n}(\mathrm{~g}, V(\Lambda))$ $=\mathbf{H}^{n}(\mathfrak{g}, V(\Lambda))=\{0\}$ otherwise.
3. Case of $\mathfrak{z l}(2,1)$. Let

$$
H=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), C=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right),
$$

and $\quad Z_{+}=E_{12}, \quad Z_{-}=E_{21}, \quad X_{i}=E_{i 3}, \quad Y_{i}=E_{3 i}$ ($i=1,2$), where $E_{i j}$ denotes the elementary matrix with 1 in (i, j)-component and 0 elsewhere. The elements H, Z_{+}and Z_{-}generate a Lie algebra which may be written as $\mathfrak{g l}(2, \boldsymbol{C})$. We take an
irreducible representation $V_{0}=L(\Lambda)$ of $\mathrm{g}_{\overline{0}}=$ $\mathfrak{B l}(2, \boldsymbol{C}) \oplus \boldsymbol{C} \cdot \boldsymbol{C}$ with $\Lambda=(\lambda, c)$, which is a (λ $+1)$-dimensional irreducible $\mathfrak{g l}(2, \boldsymbol{C})$-module ($\lambda \in \boldsymbol{Z}_{\geq 0}$) and on which C acts as a scalar multiple by $c \in \boldsymbol{C}$. We get an induced representation $\bar{V}(\Lambda):=U(\mathfrak{g}) \otimes_{\mathfrak{p}} V_{0}$, where $\mathfrak{p}=\mathfrak{g}_{\overline{0}}+\mathfrak{g}_{1}$ and \mathfrak{g}_{1} $=\left\langle X_{1}, X_{2}\right\rangle_{C}$. Define $V(\Lambda)$ as an irreducible quotient of $\bar{V}(\Lambda)$ by a maximal submodule $I(\Lambda)$ of $\bar{V}(\Lambda)$. Every finite-dimensional irreducible representation of $\mathfrak{g l}(2,1)$ is realized as $V(\Lambda) . \bar{V}(\Lambda)$ is irreducible if and only if $(\lambda-c)(\lambda+c+2) \neq$ 0 . In case $\bar{V}(\Lambda)$ is irreducible, we can get the homology groups $\mathbf{H}_{n}(\mathfrak{g}, \bar{V}(\Lambda))$ which are isomorphic to $\mathbf{H}_{n}(\mathfrak{p}, L(\Lambda))$ by Shapiro's lemma. The latter vanish for any n.

CASE $\lambda=c \in \boldsymbol{Z}_{\geq 0}$. When $\lambda=c=0$, $V(\lambda, c)=\mathbf{C}$ and homology groups are obtained similarly to the follwing case.

In case $\lambda=c>0$, we have $V(\Lambda) \cong$ $I\left(\Lambda^{\prime}\right)$ with $\Lambda^{\prime}:=\left(\lambda^{\prime}, c^{\prime}\right)=(\lambda-1, c-1)$, and $I\left(\Lambda^{\prime}\right)$ is decomposed into two irreducible g_{0} modules (cf. [4]) as $I\left(\Lambda^{\prime}\right)=I_{1} \oplus I_{2}$ with $I_{1}:=$ $\left\langle-i\left(Y_{1} \otimes v_{i-1}\right)+Y_{2} \otimes v_{i} \mid 0 \leq i \leq \lambda^{\prime}+1\right\rangle_{\boldsymbol{C}}$ and $I_{2}:=Y_{1} Y_{2} \otimes L(\Lambda)$. Accordingly we have B_{n} $=B_{n}{ }^{1} \otimes B_{n}{ }^{2}$, where $B_{n}{ }^{i}=\oplus_{p+q+r=n}\left(\wedge^{p} g_{\overline{0}} \otimes \wedge^{q} g_{1}\right.$ $\otimes \wedge^{r} \mathfrak{g}_{-1} \otimes I_{i}$). We take $\mathfrak{g}_{\overline{0}}$ as \mathfrak{q} in Lemma 1. On each component, C acts as a scalar multiple by $-q+r+i . \wedge g_{\overline{0}}$ is decomposed into four 3 -dimensional irreducible $\boldsymbol{z l}(2, \boldsymbol{C})$-modules and a 4 -dimensional trivial $\mathfrak{z l}(2, \boldsymbol{C})$-module, while highest weights of $\wedge^{q} \mathfrak{g}_{1}, \wedge^{r} \mathfrak{g}_{-1}$ and I_{i} are q, r and $\lambda^{\prime}+2-i$ respectively. Here $g_{-1}=\left\langle Y_{1}\right.$, $\left.Y_{2}\right\rangle_{C}$.

Lemma 5. Let $V_{n}\left(n \in \boldsymbol{Z}_{\geq 0}\right)$ denote an $(n+$ 1)-dimensional irreducible $\mathfrak{z l}(2, \boldsymbol{C})$-module. For k, $l \in \boldsymbol{Z}_{\geq 0}$, the tensor product of two modules V_{k} and V_{l} is a direct sum of $\min (k, l)+1$ number of $\mathcal{B l}(2, C)$-modules as $V_{k} \otimes V_{l}=\bigoplus_{j=0}^{\min (k, l)} V_{k+l-2 j}$.

Using this well-known lemma, we see that $\left(B_{n}{ }^{1}\right)^{9}$ and $\left(B_{n}{ }^{2}\right)^{9}$ are 6- and 2-dimensional spaces respectively for sufficiently large n and that for some small n 's, dimensions of $B_{n}{ }^{9}$ are smaller than $8=6+2$. Fix explicitly a basis of $B_{n}{ }^{9}$, and compute ∂ on them, then we can obtain the next table:

n	$\lambda^{\prime}+1$	$\lambda^{\prime}+2$	$\lambda^{\prime}+3$	$\lambda^{\prime}+4$	$\lambda^{\prime}+5$	$\lambda^{\prime}+6$	$\cdots \cdots \cdot$
$\operatorname{dim} D_{n}$	1	2	4	7	8	8	$\cdots \cdots$
$\operatorname{dim} \operatorname{Ker} \partial_{n-1}$	1	2	2	5	4	4	$\cdots \cdots$
$\operatorname{dim} \operatorname{Im} \partial_{n}$	0	2	2	4	4	4	$\cdots \cdots$

From this result, we have the following proposition.

Proposition 6. Let $\Lambda^{\prime}=\left(\lambda^{\prime}, c^{\prime}\right)$ with $\lambda^{\prime}=c^{\prime}$ $\in \boldsymbol{Z}_{\geq 0}$. Then dimensions of homology groups of irreducible \mathfrak{g}-module $I\left(\Lambda^{\prime}\right)$ are
$\operatorname{dim} \mathbf{H}_{n}\left(\mathfrak{g}, I\left(\Lambda^{\prime}\right)\right)=1 \quad\left(n=\lambda^{\prime}+1, \lambda^{\prime}+4\right)$, and $=0$ (otherwise).
CASE $\lambda=-c-2 \in \boldsymbol{Z}_{\geq 0}$. In this case, $V(\Lambda) \cong I\left(\Lambda^{\prime}\right)$ with $\Lambda^{\prime}=\left(\lambda^{\prime}, c^{\prime}\right)=(\lambda+1, c-$ 1), and $I\left(\Lambda^{\prime}\right)=I_{1}^{\prime} \otimes I_{2}^{\prime}$ with $I_{1}^{\prime}:=\left\langle\left(\lambda^{\prime}-i\right) Y_{1}\right.$ $\otimes v_{i}+Y_{2} \otimes v_{i+1}\left|0 \leq i \leq \lambda^{\prime}+1\right\rangle_{C}$ and $I_{2}^{\prime}:=$ $Y_{1} Y_{2} \otimes L(\Lambda)$. The calculations are similar and we get the following.

Proposition 7. Let $\Lambda^{\prime}=\left(\lambda^{\prime}, c^{\prime}\right)$ with $\lambda^{\prime}=$ $-c^{\prime}-2 \in \boldsymbol{Z}_{\geq 0}$. Then dimensions of homology groups of irreducible module $I\left(\Lambda^{\prime}\right)$ are

$$
\begin{aligned}
\operatorname{dim} \mathbf{H}_{n}\left(\mathfrak{g}, I\left(\Lambda^{\prime}\right)\right) & =1 \quad\left(n=\lambda^{\prime}, \lambda^{\prime}+3\right) \\
\text { and } & =0 \quad \text { (otherwise })
\end{aligned}
$$

We get our main result for $\mathfrak{B l}(2,1)$ from these propositions and the duality in Lemma 2 and $V(\lambda, c)^{*} \cong V\left(\lambda^{\prime}, c^{\prime}\right)$ with $\lambda^{\prime}=\lambda-1, c^{\prime}=$ $-c-1$ in case $\lambda=c>0$ (and so $\lambda^{\prime}+c^{\prime}+2$ $=0$).

Theorem 8. Let $V(\Lambda)$ be a finite-dimensional irreducible representation of $\mathfrak{g}=\mathfrak{B l}(2,1)$ with highest weight $\Lambda=(\lambda, c), \lambda \in \boldsymbol{Z}_{\geq 0}, c \in \boldsymbol{C}$. Then, in case $\lambda=c$,

$$
\begin{gathered}
\operatorname{dim} \mathbf{H}_{n}(\mathfrak{g}, V(\Lambda))=\operatorname{dim} \mathbf{H}^{n}(\mathfrak{g}, V(\Lambda)) \\
= \begin{cases}1 & (n=\lambda, \lambda+3) \\
0 & \text { (otherwise })\end{cases}
\end{gathered}
$$

In case $\lambda+c+2=0$,

$$
\begin{gathered}
\operatorname{dim} \mathbf{H}_{n}(\mathrm{~g}, \\
= \begin{cases}1 & (n=\lambda+1, \\
0 & \text { (otherwise) })\end{cases}
\end{gathered}
$$

In case $(\lambda-c)(\lambda+c+2) \neq 0$,
$\mathbf{H}_{n}(\mathrm{~g}, V(\Lambda))=0$ for any n.

The details for $\mathfrak{g}=\mathfrak{g l}(2,1)$ will appear elsewhere [10].

References

[1] S. Chemla: Propriétés de dualité dans les représentations coinduites de superalgèbres de Lie. Thèse de Doctrat, Université Paris 7 (1990).
[2] C. Chevalley-S. Eilenberg: Cohomology theory of Lie groups and Lie algebras. Trans. Amer. Math. Soc., 63, 85-124 (1948).
[3] D. B. Fuks: Cohomology of Infinite Dimensional Lie Algebras. Plenum Publishing Corporation (1986).
[4] H. Furutsu: Representations of Lie superalgebras. II. Unitary representations of Lie superalgebras of type $A(n, 0)$. J. Math. Kyoto Univ., 29, 671-687 (1989).
[5] V. G. Kac: Representations of classical Lie superalgebras. Lect. Notes in Math., vol. 676, Springer-Verlag, pp. 597-626 (1978).
[6] V. G. Kac: Lie superalgebras. Advances in Math., 26, 8-96 (1977).
[7] A. W. Knapp: Lie Groups, Lie Algebras, and Cohomology. Princeton University Press (1988).
[8] J. Terada: Lie superalgebras and cohomological induction. Master's thesis, Kyoto University (1992) (in Japanese).
[9] J. Terada: Representation of Lie superalgebra and cohomology. Reports of Symposium on Representation Theory at Yamagata, pp. 66-83 (1992) (in Japanese).
[10] J. Tanaka (née Terada): Homology and cohomology of a Lie superalgebre $\$ \mathbf{l}(2,1)$ with coefficients in finite-dimensional irreducible representations (to appear).

