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This paper is a continuation of the author’s
earlier paper [1]. For undefined terms and nota-
tions used here we refer to [1]. In section 1 we
describe some properties of the lattice of J-
ideals of a distributively generated SI-seminear-
ring (cf. [1]). In section 2 we define a topology in
the space of all prime J-ideals in a distributive-
ly generated SI-seminear-ring, and show that
the subset consisting of all minimal prime J-
ideals forms a Hausdorff space. Below we
announce our results, whose details will appear
elsewhere. Only some indications of proof will be
given to Theorems 3, 4.

1. Distributively generated S/-seminear-
rings. Throughout this section R will denote a
d.g. seminear-ring with an absorbing zero as de-
fined in [1]. As remarked in [1], the product AB
of J-ideals A and B of R is an J-ideal. Moreov-
er, for each family of J-ideals {A;:i € I} of R,
the sum 2,.;A; as defined in [1], is the unique
minimal member of the family of all JS-ideals of
R containing the J-ideals {A,:i € I}'; and
N ;c;A; is the unique maximal member of the
family of all J-ideals of R contained in the
B-ideals {4, :1¢ € I}. Using these facts, we may
state Propositions 2.2 and 2.3 given in [1] in the
following forms.

Proposition 1.
equivalent :

(1) R is SL.

(2) For each pair of S-ideals A, B of R, AN
B = AB.

(3) The set of S-ideals of R (ordered by inclu-
sion) is a semilattice (£, A) with AAB = AB for
each pair of S-ideals A, B of R.

Proposition 2. The following assertions are
equivalent .

(1) R is SI.

(2) The set of all S-ideals of R (ordered by in-
clusion) forms a complete lattice £y under the sum
and intersection of S-ideals with I N J = IJ for
each pair of S-ideals I, J of R.

The following assertions are

We also have:

Proposition 3.
equivalent :

(1) For each pair of S-ideals A, B of R, A N
B = AB.

(2) R is SL

(3) For each pair of S-ideals A, B of R, B N
A = AB.

(4) For each pair of S-ideals A, B of R, A N
A'By)=ANBWU'B={rER:ra€ B for
alla € A}).

Next we show that the lattice ¥, described
in Proposition 2, is a (complete) Brouwerian and
hence distributive lattice. A lattice ¥ is called
Brouwerian if for any a, b € &, the set of all x €
L satisfying @ A\ x < b contains a greatest ele-
ment ¢, the pseudo-complement of a relative to b.

Proposition 4. If R is an SI-seminear-ring,
then the lattice € is distributive.

Analogous to the notion of prime ideals in
near-ring theory ([2], p. 62), we call an JS-ideal
P of a seminear-ring R prime if ] S P= 1< P
or J € P holds for all S-ideals I, J of R; P is
called completely prime if for a, b € R, ab € P
= a€ Por b€ P;P is minimal prime if P is a
minimal element of the set of prime JS-ideals of
R. An J-ideal K of R is semiprime if for all
S-ideals I of R,’S K=T1S K ;K is com-
pletely semiprime if for @ € R and n a positive in-
teger, @ € K= a € K. Furthermore, an S-ideal
Q of a seminear-ring R is called idrreducible
(strongly irreducible) if INJ=Q=>I1I= @ or
J=QUNJES Q=>I<S Q or J < Q) holds for
all S-ideals I, J or R. Thus any prime JS-ideal
is strongly irreducible and any strongly irreduci-
ble JS-ideal is irreducible. The following proposi-
tion shows that the concepts of prime, irreducible
and strongly irreducible J-ideals coincide for
SI-seminear-rings.

Proposition 5. Let R be an SI-seminear-ring.
Then the following assertions for an S-ideal P of R
are equivalent :

The following assertions are
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(1) P is prime.

(2) P is irreducible.

An JS-ideal J of R is a direct summand of R
if there exists an J-ideal J’ called a cosummand
of J,such that /+ J = R and J N J’ = (0).

Proposition 6. Let R be an SI-seminear-ring.
Then the set of dirvect summands of R forms a Bool-
ean sublattice of Lp.

The above proposition can be used to obtain
the following characterization of distributively
generated SI-seminear-rings.

Theorem 1. The following assertions are
equivalent :
(1) R is SI.

(2) Each proper S-ideal of R is the intersec-
tion of prime S-ideals which contain it.

We now give an example of a class of regu-
lar seminear-rings, namely distributively gener-
ated regular seminear-rings which are neither
(regular) near-rings nor (regular) semirings.

Example 1. Let R be a distributively gener-
ated regular zero symmetric (that is, having an
absorbing zero) right near-ring (see [2], p. 407
for examples of such near-rings) and let D be the
multiplicative subsemigroup of (R, :) which
generates (R, +). Furthermore, let (S, *) be a
regular semigroup and let ¢ : (S, ) — (R, *) be
the homomorphism defined by ¢(s) = 0, for all
sE€ S Let A= S U R. On the set A, introduce
the structure of a right seminear-ring according
to the procedure described in ([1], Example 1).
Then (A, +, *) is a regular seminear-ring. Now
adjoin an element 8 € A to A, such that @ + 6 =
0+a=a and af = 0a= 0, for all a€ A U
{6}). Let A~ =AU {6}. Then (4, +, ) is a re-
gular seminear-ring with an absorbing zero 6.
Let D’ =S U D U {6). It is easily verified that
D’ is a multiplicative subsemigroup of (4, -),
consisting of left distributive elements, which
generates (A’, +). Hence A’ is a d.g. regular (and
hence SI) seminear-ring with an absorbing zero.

2. Prime JS-ideal spaces. Unless stated
otherwise, R will denote a d.g. seminear-ring
with an absorbing zero and a (multiplicative)
identity, and P, will denote the set of proper
prime JS-ideals of R. Further for any J-ideal [
of R, we define the sets @, = {JE P,: I Z ]}
and T(Pg) = {0, : I is an S-ideal of R}.

Theorem 2. Let R be an SI-seminear-ring.
The set T(Pg) constitutes a topology on the set Pg
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and the assignment I — O, is a lattice isomorphism
between the lattice Lr and the lattice of open sub-
sets of Pp.

The space Py constructed in the above
theorem need not be Hausdorff as shown by the
following example.

Example 2. Let R = {0, a, 1} with the fol-
lowing multiplication tables

+]0 a 1 -lo a 1
010 a 1 0|0 O O
ala a a a| 0 a a
1|1 a 1 110 a 1

Note that R is a reduced regular d.g. seminear-
ring with an absorbing zero ; €, = {{0}, {0, a},
{0, a, 1}} and P, = {{0}, {0, a}}. The space of
prime JS-ideals of R is clearly not Hausdorff.

Remark. If R is a regular near-ring with
no nonzero nilpotent elements, then every R-
subgroup of R is a (two-sided near-ring) ideal,
all idempotents are central and every prime ideal
is a minimal prime ideal (see [2], 9.158, 9.159,
9.163). The above example shows that unlike the
situation in near-rings, prime ideals of a
seminear-ring need not be minimal prime for re-
gular seminear-rings with no nonzero nilpotent
elements.

Next we shall prove that if R is a regular
seminear-ring with central idempotents, then the
subspace P,z of P, consisting of minimal prime
J-ideals is Hausdorff. For this purpose we need
the following lemmas.

Lemma 1. Let K be a completely semiprime
B-ideal of a (not necessarily d.g.) seminear-ring R.
Then each of the following is true:

(1) Ifab € K (a, b € R), then ba € K.

(i5) If ab € K and x € R, then axb € K.

(i1)) If ab” € K (n is a positive integer), then
ab € K.

(iv) If abc € K (a, b, ¢ € R) then acb € K,
and more gemerally, if a,a, ... a, € K(a, € R,
i=12,...,n) then a;a,, ... a;, € K where i,,
Iy ..., 1, is any permutation of 1,2,. .., n.

Lemma 2. Let R be a (not necessarily d.g.) re-
duced seminear-ring. If ay=0 for some posilive
integer n and a, y € R, then ay = 0.

Definition 1. A subset M of a seminear-ring
R is called an m-system if for a, b € M, there ex-
ists some * € R such that axb € M.

Lemma 3. Let R be a reduced seminear-ring



No. 6]

and let M be an m-system of R. If M does not in-
tersect the completely semiprime S-ideal K, then
there exists an S-ideal P which is maximal in the
set of those completely semiprime S-ideals which
contain K and do wot intersect M. Awny such
S-ideal P is completely prime.

Lemma 4. Let R be a regular seminear-ring
with central idempotents. If P is a prime S-ideal of
R, then O, = {r € R : va = 0 for some a & P} is
an S-ideal of R and Op S P.

The following theorem gives a useful charac-
terization of minimal prime J-ideals of regular
seminear-rings with central idempotents.

Theorem 3. Let R be a regular seminear-ring
with central idempotents. A prime S-ideal P is a
minimal prime S-ideal if and only if P = O,.

Sketch of proof. If P # O, there exists a €
P\O, by Lemma 4 and M = R\P is an m-
system. Put now . _

K = {a"z,a"x, -+ a"x,a™" :n € N U {0}, i,

i, €NUA{0}, i, ... ,i,€EN, x,, ... ,2, €
M) (where @®=1). Then K2 M,0 €K and K
is an m-system. Op N K = ¢ and O, is complete-
ly semiprime. Lemma 3 implies that there exists
a completely prime JS-ideal A such that
ANK=¢. As AS P and A¥# P, P is not a
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minimal prime J-ideal. The converse is clear. []

As an application of the above theorem, we
can prove.

Theorem 4. Let R be a regular seminear-ring
with central idempotents. Then the subspace Py is
Hausdorff.

Sketch of proof. Let P, P, € Py, P, # P,
Then there exists £ € P,\P, As P, = Op,
according to Theorem 3, we have x € O o SO
there exists ¢ € P, such that xt = 0. From Lem-
ma 1(ii), we have Rt = (0) and so RxRt = (0).
According to Proposition 2(i), Rxr and R? are
JS-ideals of R, and from Proposition 1 Rx N R¢
= RxRt = (0). Thus Op, N Op, = Opnr: = O
= @. As P, € Oy, P, € O,, P, is Hausdorff.

]
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