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This paper is a continuation of the author’s
earlier paper [1]. For undefined terms and nota-
tions used here we refer to [1]. In section 1 we
describe some properties of the lattice of
ideals of a distributively generated SI-seminear-
ring (el. [1]). In section 2 we define a topology in
the space of all prime s3-ideals in a distributive-
ly generated SI-seminear-ring, and show that
the subset consisting of all minimal prime
ideals forms a Hausdorff space. Below we
announce our results, whose details will appear
elsewhere. Only some indications of proof will be
given to Theorems 3, 4.

1. Distributively generated SI-seminear-
rings. Throughout this section R will denote a
d.g. seminear-ring with an absorbing zero as de-
fined in [1]. As remarked in [1], the product AB
of -ideals A and B of R is an -ideal. Moreov-
er, for each family of -ideals {A:i I} of
the sum YIA as defined in [1], is the unique
minimal member of the family of all -ideals of
R containing the -ideals {A:i I} and

IA is the unique maximal member of the
family of all -ideals of R contained in the
-ideals {A:i I}. Using these facts, we may
state Propositions 2.2 and 2.3 given in [1] in the
following forms.

Proposition 1. The following assertions are
equivalent:

(1) R is SI.
(2) For each pair of a3-ideals A, B of R, A

B AB.
(3) The set of -ideals of R (ordered by inclu-

sion) is a semilattice (R, A) with AAB AB for
each pair of s-ideals A, B of R.

Proposition 2. The following assertions are
equivalent:

(1) R is SI.
(2) The set of all -ideals of R (ordered by in-

clusion) forms a complete lattice under the sum
and intersection of z3-ideals with I C? J IJ for
each pair of s3-ideals I, J of R.

We also have:
Proposition 3. The following assertions are

equivalent:
(1) For each pair of -ideals A, B of R, A C

B AB.
(2) R is SI.
(3) For each pair of -ideals A, B of R, B (?

A AB.
(4) For each pair of -ideals A, B of R, A C?

(A-B) A (? B (A-B {r R ra B for
all a A} ).

Next we show that the lattice described
in Proposition 2, is a (complete) Brouwerian and
hence distributive lattice. A lattice is called
Brouwerian if for any a, b , the set of all x
L satisfying a/ x _< b contains a greatest ele-
ment c, the pseudo-complement of a relative to b.

Proposition 4. If R is an SI-seminear-ring,
then the lattice-R is distributive.

Analogous to the notion of prime ideals in
near-ring theory ([2], p. 62), we call an -ideal
P of a seminear-ring R prime if IJ - P I P
or jr

___
p holds for all -ideals I, jr of R ;P is

called completely prime if for a, b R, ab P
a P or b P P is minimal prime ifPis a

minimal element of the set of prime -ideals of
R. An -ideal K of R is semiprime if for all
s-ideals I of R, I K I- K ;K is com-

pletely semiprime if for a R and n a positive in-
teger, an K a K. Furthermore, an -ideal
Q of a seminear-ring R is called irreducible

(strongly irreducible) if I fl J= Q I Q or

J Q(I C J
_
Q I Q or J - Q) holds for

all -ideals I, J or R. Thus any prime s-ideal
is strongly irreducible and any strongly irreduci-
ble -ideal is irreducible. The following proposi-
tion shows that the concepts of prime, irreducible
and strongly irreducible -ideals coincide for
SI-seminear-rings.

Proposition 5. Let R be an SI-seminear-ring.
Then the following assertions for an x3-ideal P of R
are equivalent:
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(1) P is prime.

(2) P is irreducible.
An -ideal J of R is a direct summand of R

if there exists an -ideal J’ called a cosummand
of J, such that J + J’= R and J fl J’= (0).

Proposition 6. Let R be an SI-seminear- ring.
Then the set of direct summands of R forms a Bool-
ean sublattice of R.

The above proposition can be used to obtain
the following characterization of distributively
generated SI-seminear-rings.

Theorem 1. The following assertions are
equivalent:

(1) R is SI.
(2) Each proper s3-ideal of R is the intersec-

tion of prime -ideals which contain it.

We now give an example of a class of regu-
lar seminear-rings, namely distributively gener-
ated regular seminear-rings which are neither
(regular) near-rings nor (regular) semirings.

Example 1. Let R be a distributively gener-
ated regular zero symmetric (that is, having an
absorbing zero) right near-ring (see [2], p. 407
for examples of such near-rings) and let D be the
multiplicative subsemigroup of (R, ") which
generates (R, +). Furthermore, let (S, ") be a
regular semigroup and let :(S,-)-- (R, ") be
the homomorphism defined by (s)--0, for all
s S. Let A S U R. On the set A, introduce
the structure of a right seminear-ring according
to the procedure described in ([1], Example 1).
Then (A, +, ") is a regular seminear-ring. Now
adjoin an element 0 A to A, such that a q- 0--
0 + a a and aO Oa 0, for all a A U
{0}. Let A’= A U {0}. Then (A’, +, ") is a re-
gular seminear-ring with an absorbing zero 0.
Let D’= S U D U {0}. It is easily verified that
D’ is a multiplicative subsemigroup of (A’, "),
consisting of left distributive elements, which
generates (A’, +). Hence A’ is a d.g. regular (and
hence S/) seminear-ring with an absorbing zero.

2. Prime a3-ideal spaces. Unless stated
otherwise, R will denote a d.g. seminear-ring
with an absorbing zero and a (multiplicative)
identity, and P will denote the set of proper
prime -ideals of R. Further for any -ideal I
of R, we define the sets 19,= {J PR:IJ}
and T(P) {0 I is an -ideal of R}.

Theorem 2. Let R be an SI-seminear-ring.
The set T(P) constitutes a topology on the set P

and the assignment I O, is a lattice isomorphism
between the lattice R and the lattice of open sub-
sets of Pe.

The space Pe constructed in the above
theorem need not be Hausdorff as shown by the
following example.

Example 2. Let R {0, a, 1} with the fol-
lowing multiplication tables

/ 0 a 1
0 0 a 1
a a a a
1 1 a 1

0 a 1
0 0 0
0 a a
0 a 1

Note that R is a reduced regular d.g. seminear-
ring with an absorbing zero R {{0}, {0, a},
{0, a, 1}} and PR {{0}, {0, a}}. The space of
prime s3-ideals of R is clearly not Hausdorff.

Remark. If R is a regular near-ring with
no nonzero nilpotent elements, then every R-
subgroup of R is a (two-sided near-ring) ideal,
all idempotents are central and every prime ideal
is a minimal prime ideal (see [2], 9.158, 9.159,
9.163). The above example shows that unlike the
situation in near-rings, prime ideals of a
seminear-ring need not be minimal prime for re-
gular seminear-rings with no nonzero nilpotent
elements.

Next we shall prove that if R is a regular
seminear-ring with central idempotents, then the
subspace PoR of PR consisting of minimal prime
-ideals is Hausdorff. For this purpose we need
the following lemmas.

Lemma 1. Let K be a completely semiprime
-ideal of a (not necessarily d.g.) seminear-ring R.
Then each of the following is true:

(i) If ab K (a, b R), then ba K.
(ii) If ab K and x R, then axb K.
(iii) If ab K (n is a positive integer), then

abK.
(iv) If abc K (a, b, c R) then acb K.

and more generally, if aa. a, K(a R,
i 1,2, n) then aa,.., a, K where i,
i.,. i, is any permutation of 1,2,..., n.

Lemma 2. Let R be a (not necessarily d.g.) re-
duced seminear-ring. If any 0 for some positive
integer n and a, II R, then all O.

Definition 1. A subset M of a seminear-ring
R is called an m-system if for a, b M, there ex-
ists some x R such that axb M.

Lemma 3. Let R be a reduced seminear-ring
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and let M be an m-system of R. If M does not in-
tersect the completely semiprime 3-ideal K, then
there exists an 3-ideal P which is maximal in the
set of those completely semiprime 3-ideals which
contain K and do not intersect M. Any such
z3-ideal P is completely prime.

Lemma 4. Let R be a regular seminear-ring
with central idempotents. If P is a prime -ideal of
R, then Op {r R ra 0 for some a : P} is

an z3-ideal of R and Op
_

P.
The following theorem gives a useful charac-

terization of minimal prime z3-ideals of regular
seminear-rings with central idempotents.

Theorem 3. Let R be a regular seminear-ring
with central idempotents. A prime 3-ideal P is a

minimal prime 3-ideal if and only if P Op.
Sketch of proof. If P Op, there exists a

P\ Oe by Lemma 4 and M--R\P is an m-
system. Put now

io i inXnaK= {a XoU x--.a "n N [3 {0}, io,
i+N O {0}, i, ,iN, xo, ,x
M} (where a= 1). Then K M, 0 K and K
is an m-system. Op K $ and Op is complete-
ly semiprime. Lemma 3 implies that there exists
a completely prime -ideal A such that
A K= . As A---P and ACP, P is not a

minimal prime -ideal. The converse is clear.
As an application of the above theorem, we

can prove.
Theorem 4. Let R be a regular seminear-ring

with central idempotents. Then the subspace POR is

Hausdorff
Sketch of proof. Let P1, P2 POR, PI 4: P2.

Then there exists x P\P. As P- O,
according to Theorem 3, we have x Op1, so
there exists t P such that xt--0. From Lem-
ma l(ii), we have xRt (0) and so RxRt (0).
According to Proposition 2(i), Rx and Rt are
z3-ideals of R, and from Proposition 1 Rx N Rt

RxRt (0). Thus ex f3 ORt ORxnt. As P Oet, P2 Oex, Po is Hausdorff.
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