Remark on the Range Inclusions of Toeplitz and Hankel Operators^{*)}

By Yuka SONE and Takashi YOSHINO

Mathematical Institute, Tôhoku University (Communicated by Kiyosi ITÔ, M. J. A., Sept. 12, 1995)

Abstract: In this paper, we study the equivalent relations between range inclusions and symbols of Toeplitz and Hankel operators, and give some applications.

Let μ be the normalized Lebesgue measure on the Borel sets of the unit circle in the complex plane C. If $e_n(z) = z^n$ for |z| = 1 and $n = 0, \pm$ 1, $\pm 2, \cdots$, then the bounded measurable functions e_n constitute an orthonormal basis for $L^2 =$ $L^{2}(\mu)$. And the functions e_{n} , $n = 0, 1, 2, \cdots$ constitute the orthonormal basis for H^2 .

For φ in L^{∞} , the Laurent operator L_{φ} is the multiplication operator on L^2 given by $L_{\varphi}f = \varphi f$ for $f \in L^2$. And the Toeplitz operator T_{φ} is the operator on H^2 given by $T_{\omega}f = PL_{\omega}f$ for $f \in$ H^2 , where P is the orthogonal projection from L^2 onto H^2 . The Hankel operator H_{φ} is the operator on H^2 given by $H_{\varphi}f = J(I-P)L_{\varphi}f$ for $f \in H^2$, where J is the unitary operator on L^2 given by $J(z^{-n}) = z^{n-1}, n = 0, \pm 1, \pm 2, \cdots$

The following results are well known, but, for convenience's sake we state here them without proof.

Proposition 1. T_{φ} has the following properties.

(1) $T_z^* T_{\varphi} T_z = T_{\varphi}$, where T_z^* denotes the adjoint operator of T_z .

(2) $T_{\varphi}^{*} = T_{\overline{\varphi}}$, where the bar denotes the complex conjugate.

- (3) $T_{\alpha\varphi+\beta\varphi} = \alpha T_{\varphi} + \beta T_{\varphi}, \ \alpha, \ \beta \in C.$ (4) $T_{\varphi} = O$ if and only if $\varphi = o$.
- (5) $\|T_{\varphi}\| = \|\varphi\|_{\infty}$.

We denote the set of all bounded linear operators on a Hilbert space \mathscr{H} by $\mathscr{B}(\mathscr{H})$.

Proposition 2 ([1]). $A \in \mathcal{B}(H^2)$ is a Toeplitz operator if and only if $T_z^*AT_z = A$. And, in particular, $A \in \mathscr{B}(H^2)$ is analytic Toeplitz operator (i.e., $A = T_{\varphi}$ for some $\varphi \in H^{\infty}$) if and only if $T_z A = A T_z$

Proposition 3. H_{ω} has the following properties.

- (1) $T_z^* H_{\varphi} = H_{\varphi} T_z$. (1) $H_{z} H_{\varphi} = H_{\varphi} I_{z}$. (Hence $\mathcal{N}_{H_{\varphi}} = \{x \in H^{2} ; H_{\varphi}x = o\}$ is invariant under T_{z} and $\mathcal{N}_{H_{\varphi}} = \{o\}$ or $\mathcal{N}_{H_{\varphi}} = T_{q}H^{2}$, where q is inner). (2) $H_{\varphi}^{*} = H_{\varphi^{*}}$, where $\varphi^{*}(z) = \overline{\varphi(\overline{z})}$.
- (3) $H_{\alpha\varphi+\beta\psi} = \alpha H_{\varphi} + \beta H_{\psi}, \ \alpha, \ \beta \in C.$
- (4) $H_{\varphi} = O$ if and only if $(I P)\varphi = o$ (i.e., $\varphi \in H^{\infty}$).
- (5) $||H_{\varphi}|| = \inf\{||\varphi + \psi||_{\infty}; \psi \in H^{\infty}\}.$

Proposition 4. $A \in \mathcal{B}(H^2)$ is a Hankel operator if and only if $T_z^*A = AT_z$. Moreover we can choose the symbol $\varphi \in L^{\infty}$ of $A = H_{\varphi}$ such as $\|A\| = \|\varphi\|_{\infty}$

The following relations between Toeplitz and Hankel operators are known.

Proposition 5 ([5]). $H_{\phi}^{*}H_{\varphi} = T_{\overline{\psi} \ \varphi} - T_{\overline{\psi}} T_{\varphi}$. And, for any $\psi \in H^{\infty}$, $H_{\varphi}T_{\phi} = H_{\varphi\phi}$ and $T_{\phi}^{*}H_{\varphi}$ $= H_{\omega}T_{\omega}*.$

Concerning the range inclusions of Toeplitz and Hankel operators, the following results are known.

Proposition 6 ([6]). If φ and ψ are in H^{∞} , then $T_{\omega}H^2 \subseteq T_{\omega}H^2$ if and only if there exists a g $\in H^{\infty}$ uniquely such that $T_{\varphi} = T_{\psi}T_{g} = T_{\psi g}$. And then $\varphi = \psi g$. Particularly, if φ and ψ are inner, then g is also inner.

Proposition 7 ([5]). The following assertions are equivalent.

- (1) $H_{\varphi_1} H^2 \subseteq H_{\varphi_2} H^2$. (2) $H_{\varphi_1} H_{\varphi_1}^* \leq \lambda^2 H_{\varphi_2} H_{\varphi_2}^*$ for some $\lambda \geq 0$. (3) There exists a function $h \in H^\infty$ such that $\|h\|_{\infty} \leq \lambda$ for some $\lambda \geq 0$ and that $H_{\varphi_1} = H_{\varphi_2} T_h = H_{\varphi_2 h}.$
- (4) There exists a function $h \in H^{\infty}$ such that $\|h\|_{\infty} \leq \lambda$ for some $\lambda \geq 0$ and that $\varphi_1-\varphi_2h\in H^{\infty}.$

Proposition 8 ([3]). $T_{\varphi}^*H^2 \subseteq H_{\varphi}^*H^2$ if and

¹⁹⁹¹ Mathematics Subject Classification: 47B35

^{*)} Dedicated to Professor Satoru Igari on his 60th birthday.

only if $\varphi = o$.

No. 7]

Proposition 9 ([3]). The following assertions are equivalent.

- (1) $H_{\varphi}^{*}H^{2} \subseteq T_{\varphi}^{*}H^{2}$.
- (2) P is bounded below on $[L_{\varphi}H^2]^{-L^2} \neq \{o\}$, where $[L_{\varphi}H^2]^{-L^2}$ denotes the closure of $L_{\varphi}H^2$ in L^2 .

In Proposition 7, $H_{\varphi_1} = H_{\varphi_2}T_h$ for $h \in H^{\infty}$ implies that $H_{\varphi_1}^* = T_h^*H_{\varphi_2}^*$ and $H_{\varphi_1}^*H^2 \subseteq T_h^*H^2$. And concerning this and Proposition 9, we have the following.

Theorem 1. For $\psi \in H^{\infty}$, $H_{\varphi}H^2 \subseteq T_{\varphi}^*H^2$ if and only if there exists a function $u \in L^{\infty}$ such that $H_{\varphi} = T_{\varphi}^*H_u$.

To prove this theorem, we need the following two lemmas.

Lemma 1 ([2]). For $A, B \in \mathcal{B}(\mathcal{H})$, the following assertions are equivalent.

- (1) $A\mathcal{H} \subseteq B\mathcal{H}$.
- (2) $AA^* \leq \lambda^2 BB^*$ for some $\lambda \geq 0$.
- (3) There exists a $C \in \mathscr{B}(\mathscr{H})$ such that A = BC.

In particular, there exists a $C \in \mathscr{B}(\mathscr{H})$ uniquely such that

(a) $|| C ||^2 = \inf \{ \mu : AA^* \le \mu BB^* \}$

(b) $\mathcal{N}_A = \mathcal{N}_C$ and (c) $C\mathcal{H} \subseteq [B^*\mathcal{H}]^{\sim}$.

Lemma 2. For any non-zero $f \in H^2$, there exist an inner function φ and an outer function h uniquely such that $f = \varphi h$.

Proof of Theorem 1. $H_{\varphi}H^2 = T_{\phi}^*H_uH^2 \subseteq T_{\phi}^*H^2$.

Conversely if $H_{\varphi}H^2 \subseteq T_{\phi}^*H^2$, then we may assume $\psi \neq o$ because, in the case where $\psi = o$, we have $H_{\varphi} = O$ and the assertion is clear. And then, by Lemma 2, $\psi = gh$ where g is inner and h is outer. Since

T_gH² = T_gT_g^{*}T_gH² \subseteq T_gT_g^{*}H², H² = T_g^{*}T_gH² \subseteq T_g^{*}(T_gT_g^{*}H²) = T_g^{*}H² \subseteq H² and T_g^{*}H² = H² and hence T_{\u03c9}^{*}H² = T_h^{*}T_g^{*}H² = T_h^{*}H². Hence, by the assumption, H_{\u03c9}H² \subseteq T_h^{*}H² and, by Lemma 1, there exists an A \in $\mathscr{B}(H^2)$ uniquely such that $H_{\varphi} = T_h^*A$ and that (a) $||A||^2 = \inf\{\mu: H_{\varphi}H_{\varphi}^* \leq \mu T_h^*T_h\}$ (b) $\mathcal{N}_{H_{\varphi}} = \mathcal{N}_A$ and (c) $AH^2 \subseteq [T_hH^2]^{-L^2}$. Then, $T_h^*T_z^*A = T_z^*T_h^*A = T_z^*H_{\varphi} = H_{\varphi}T_z =$ $T_h^*AT_z$ by Propositions 2 and 3. Since h is outer, $H^2 = \bigvee\{z^nh: n = 0, 1, 2, \cdots\} = [T_hH^2]^{-L^2}$ and $\mathcal{N}_{T_h^*} = \{o\}$ and hence $T_z^*A = AT_z$. Therefore, by Proposition 4, A is a Hankel operator. i.e., $A = H_v$ for some $v \in L^\infty$. And then, by Proposition 5,

$$\begin{aligned} H_{\varphi} &= T_{h}^{*}H_{v} = H_{v}T_{h^{*}} = H_{vh^{*}} = H_{vg^{*}g^{*}h^{*}} \\ &= H_{u\phi^{*}} = H_{u}T_{\phi^{*}} = T_{\phi}^{*}H_{u}, \text{ where } u = v \ \overline{g^{*}} \in \\ L^{\infty}. \end{aligned}$$

Concerning Proposition 8, we have the following.

Theorem 2. If $[T_{\varphi}H^2]^{\sim L^2} \subseteq [H_{\varphi}H^2]^{\sim L^2} \neq H^2$, then $\varphi = o$. *Proof.* If $[T_{\varphi}H^2]^{\sim L^2} \subseteq [H_{\varphi}H^2]^{\sim L^2} \neq H^2$, then

Troop. If $[T_{\varphi}H] \subseteq [H_{\varphi}H] \neq H$, then $\{o\} \neq \mathcal{N}_{H_{\varphi}^*} \subseteq \mathcal{N}_{T_{\varphi}^*}$ and, by Proposition 3, $\mathcal{N}_{H_{\varphi}^*} = T_g H^2$ for some inner function g and hence $T_{\varphi}^* T_g H^2 = \{o\}$. i.e., $T_{\overline{\varphi}g} = T_{\varphi}^* T_g = O$ and hence $\overline{\varphi}g = o$ by Proposition 1. Since g is non-zero analytic, $\varphi = o$ by F. and M. Riesz theorem (i.e., a non-zero analytic function can not vanish on a set of positive measure).

As a special case of Proposition 7, we have the following.

Theorem 3. H_{φ} is hyponormal (i.e., $H_{\varphi}H_{\varphi}^* \leq H_{\varphi}^*H_{\varphi}$) if and only if $H_{\varphi} = H_{\varphi}^*T_h$ (i.e., $\varphi - \varphi^*h \in H^{\infty}$) for some $h \in H^{\infty}$ such as $||h||_{\infty} \leq 1$. And, in this case, $H_{\varphi}T_z$ is also hyponormal.

Proof. Since H_{φ} is hyponormal if and only if $H_{\varphi}H_{\varphi}^* \leq H_{\varphi}^*H_{\varphi} = H_{\varphi^*}H_{\varphi^*}^*$ by Proposition 3, it is equivalent that there exists a function $h \in H^{\infty}$ such as $\|h\|_{\infty} \leq 1$ and $H_{\varphi} = H_{\varphi}^*T_h$ by Proposition 7. And, by Propositions 3 and 5, we have

$$H_{\varphi z} = H_{\varphi}T_{z} = H_{\varphi}^{*}T_{h}T_{z} = H_{\varphi}^{*}T_{z}T_{h} = T_{z}^{*}H_{\varphi}^{*}T_{h} = (H_{\varphi}T_{z})^{*}T_{h} = H_{\varphi z}^{*}T_{h}$$

and hence $H_{\varphi}T_z$ is also hyponormal.

By [1], it is known that Toeplitz operator T_{φ} is normal if and only if $T_{\varphi} = \lambda T_{\varphi} + \mu I$ for some $\lambda, \mu \in C$ and ψ such as $\overline{\psi} = \psi$ (i.e., T_{ψ} is Hermitian). In the case of Hankel operator, as an application of Theorem 3, we have the following.

Theorem 4. The normal Hankel operator is only a scalar multiple of a Hermitian Hankel operator.

Proof. Clearly a scalar multiple of a Hermitian Hankel operator is a normal Hankel operator.

Conversely if H_{φ} is normal, then $H_{\varphi}H_{\varphi}^* = H_{\varphi}^*H_{\varphi}$ and, by Theorem 3, there exist functions g and h in H^{∞} such that $||g||_{\infty} \leq 1$, $||h||_{\infty} \leq 1$, $H_{\varphi} = H_{\varphi}*T_g = H_{\varphi*g}$ and $H_{\varphi*} = H_{\varphi}T_h = H_{\varphi h}$. And then $H_{\varphi} = H_{\varphi}*T_g = H_{\varphi}T_hT_g = H_{\varphi}T_{hg}$ and $(T_{gh}^* - I)H_{\varphi}^* = 0$. Since $||T_{gh}|| \leq ||g||_{\infty} ||h||_{\infty} \leq 1$, $T_{gh}^*u = u$ if and only if $T_{gh}u = u$ and since $\sigma_p(T_{gh}) \cap \overline{\sigma_p(T_{gh}^*)} = \emptyset$ whenever gh is non-constant by [4; Theorem 7], gh = 1 or

 $H_{\varphi}^{*}H^{2} = \{o\}$ (i.e., $H_{\varphi}^{*} = O$). Clearly $H_{\varphi}^{*} = O$ is Hermitian. In the case where gh = 1, since 1 =|gh| = |g| |h| and since $||g||_{\infty}, ||h||_{\infty} \le 1, |g|$ = |h| = 1 a.e. (i.e., g and h are inner) and hence T_g and T_h are isometries. Since $T_g T_h = T_{gh} = I$, T_g and T_h are invertible and T_g and T_h are unitary and hence g and h are constant functions of absolute value 1. Then $g = \bar{h} = e^{i\theta_0} \mathbf{1}$ for some θ_0 $\in [0, 2\pi)$ and

 $H_{\varphi} = H_{\varphi^*g} = H_{e^{i\theta_0}\varphi^*} = e^{i\theta_0}H_{\varphi^*} = e^{i\theta_0}H_{\varphi}^*$ by Proposition 3 and hence, for any r > 0.

$$H_{\frac{1}{r}e^{-\frac{i\theta_{0}}{2}}\varphi}^{1} = \frac{1}{r} e^{-\frac{i\theta_{0}}{2}} H_{\varphi} = \frac{1}{r} e^{\frac{i\theta_{0}}{2}} H_{\varphi}^{*}$$
$$= \left(\frac{1}{r} e^{-\frac{i\theta_{0}}{2}} H_{\varphi}\right)^{*} = H_{\frac{1}{r}e^{-\frac{i\theta_{0}}{2}}}^{1} *.$$

Therefore $H_{\varphi} = re^{\frac{i\theta_0}{2}} H_{\phi}$, where $H_{\phi} = H_{\frac{1}{\pi}e^{-\frac{i\theta_0}{2}}\varphi}$ is Hermitian.

By Proposition 1, Toeplitz operator T_{φ} is Hermitian (i.e., $T_{\varphi}^{*} = T_{\varphi}$) if and only if $\bar{\varphi} = \varphi$. Hermitian Hankel operator is characterized as follows.

Theorem 5. ${H_{\varphi}}^* = H_{\varphi}$ if and only if, for $\varphi(z) = \sum_{n=-\infty}^{\infty} \lambda_n z^n,$ $\lambda_n \in \mathbf{R} \text{ for all } n = -1, -2, \cdots.$

Proof. Since $H_{\varphi}^* = H_{\varphi}$ if and only if $\varphi^* - \varphi \in H^{\infty}$ by Proposition 3 and since $\varphi^*(z) - \varphi(z)$ $=\overline{\varphi(\bar{z})} - \varphi(z) = \sum_{n=-\infty}^{\infty} \lambda_n \bar{z}^n - \sum_{n=-\infty}^{\infty} \lambda_n z^n$

$$=\sum_{n=-\infty}^{\infty}\overline{\lambda_n}z^n - \sum_{n=-\infty}^{\infty}\lambda_nz^n = \sum_{n=-\infty}^{\infty}(\overline{\lambda_n} - \lambda_n)z^n,$$

$$H_{\varphi}^* = H_{\varphi} \text{ if and only if } \overline{\lambda_n} - \lambda_n = 0 \text{ for all } n = -1, -2, \cdots.$$

References

- [1] Brown, A. and P. R. Halmos: Algebraic properties of Toeplitz operators. J. Reine Angew. Math., 213, 89-102 (1964).
- [2] Douglas, R. G.: On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc., 17, 413-415 (1966).
- Lotto, B. A.: Range inclusion of Toeplitz and [3] Hankel operators. J. Operator Theory, 24, 17-22 (1990).
- [4] Yoshino, T.: Note on Toeplitz operators. Tohoku Math. Journ., 26, 535-540 (1974).
- [5] Yoshino, T.: Range inclusion and hyponormality of Hankel operators (preprint).
- [6] Yoshino, T.: A simple proof of Sarason's result for interpolation in H^{∞} (preprint).