Gamma Factors for Generalized Selberg Zeta Functions

By Yasuro GON

Department of Mathematical Sciences, University of Tokyo (Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1995)

1. Introduction. Let K be an algebraic number field such that $[K:\mathbf{Q}] < \infty$, and $\zeta_K(s)$ be the Dedekind zeta function of K. The completed Dedekind zeta function $\widehat{\zeta}_K(s) = \zeta_K(s) \cdot \Gamma_K(s)$ has the symmetric functional equation: $\widehat{\zeta}_K(1-s) = \widehat{\zeta}_K(s)$. Here, the gamma factor is:

$$\Gamma_{K}(s) = |D_{K}|^{\frac{S}{2}} \Gamma_{\mathbf{R}}(s)^{r_{1}(K)} \Gamma_{C}(s)^{r_{2}(K)}$$

where, D_K is the discriminant of K, $r_1(K)$ and $r_2(K)$ are the number of real and complex places of K respectively. We can consider $\Gamma_{\mathbf{R}}(s) = \pi^{-\frac{s}{2}}$ $\Gamma\left(\frac{s}{2}\right)$, $\Gamma_{\mathbf{C}}(s) = \Gamma_{\mathbf{R}}(s)\Gamma_{\mathbf{R}}(s+1)$ as a "basis" of gamma factors corresponding to infinite places.

In this article we consider "gamma factors" for Selberg zeta functions. (cf. Vignéras[6], Sarnak [5], Kurokawa[3]). We give a neat expression of "gamma factors" as in the case of Dedekind zeta functions. (Theorem 1) Furthermore, we obtain a simple proof of the functional equation of the Ruelle zeta function R(s) for a compact 2ndimensional real hyperbolic space X (Theorem 2): $R(s) \cdot R(-s) = (-4 \sin^2(\pi s))^{n \cdot (-1)^{n-1}vol(X)}$.

The author would like to express his profound gratitude to Professor N. Kurokawa for his valuable suggestions and encouragement.

2. Selberg zeta functions. Let G be a connected semisimple Lie group of rank one with finite conter, K be a maximal compact subgroup of G. Let Γ be a co-compact torsion-free discrete subgroup of G. Then $X = \Gamma \setminus G/K$ is a compact locally symmetric space of rank one. For a given irreducible unitary representation τ of K, we denote by $Z_{\tau}(s)$ the Selberg zeta functions of X with K-type τ as is introduced by Wakayama [7].

For example, let X be a compact Riemann surface of genus $g \ge 2$. Then $X = \Gamma \setminus H$ where $H = SL(2, \mathbb{R})/SO(2)$ is the upper half plane, and Γ is the fundamental group $\pi_1(X)$ discretely embedded in $SL(2, \mathbb{R})$. For trivial τ , the Selberg zeta function Z(s) of a compact Riemann surface is defined by the following Euler products:

$$Z(s) = \prod_{p \in P_{\Gamma}} \prod_{k=0}^{\infty} (1 - N(p)^{-(k+s)}).$$

Here P_r is the set of all primitive hyperbolic conjugacy classes, and the norm function $N(p) = \max\{|\text{ eigenvalues of } p|^2\}$. For other rank one Lie groups and non-trivial τ , $Z_{\tau}(s)$ is defined by similar but more complicated Euler products.

Selberg-Gangolli[2]-Wakayama[7] have shown that:

 $Z_{\tau}(s)$ is meromorphic on **C**, and tells informations about τ -spectrum:

 $\hat{G}_{\tau} = \{\pi \in \hat{G} \mid m_{\Gamma}(\pi) > 0, \pi \mid_{K} \ni \tau\},\$ where $m_{\Gamma}(\pi)$ is the multiplicity of a unitary representation π of G in the right regular representation π_{Γ} of G on $L^{2}(\Gamma \setminus G)$. (and in our case $m_{\Gamma}(\pi)$ is finite for all π .)

 $Z_{ au}(s)$ has moreover the functional equation:

(1)
$$Z_{\tau}(2\rho_0 - s) = \exp\left(\int_0^{s-\nu_0} \Delta_{\tau}(t) dt\right) Z_{\tau}(s).$$

where, $\rho_0 > 0$ is a constant depending only on *G* and $\Delta_{\tau}(t)$ is the "Plancherel" density with *K*-type τ , whose explicit formula is found in [7]. Hereafter we use **renormalized** ρ_0 and $\Delta_{\tau}(t)$ like as [4].

3. Gamma factors. we shall express the exponential factor of the functional equation (1) as $\Gamma_{\tau}(s)/\Gamma_{\tau}(2\rho_0 - s)$ by the "gamma factor" $\Gamma_{\tau}(s)$ so that the completed Selberg zeta function $\widehat{Z}_{\tau}(s) = Z_{\tau}(s)\Gamma_{\tau}(s)$ will satisfy the symmetric functional equation:

(2)
$$\widehat{Z_{\tau}}(2\rho_0 - s) = \widehat{Z_{\tau}}(s)$$

If dim X is odd, the "Plancherel" density $\Delta_{\tau}(t)$ is a polynomial and "gamma factor" is trivial. Hereafter we suppose that dim X is even, i.e. $G = SO(2n, 1), SU(n, 1), Sp(n, 1), F_4$. Then the "Plancherel" density is given by $\Delta_{\tau}(t) = \sum_{\text{finite sun}} (\text{odd polynomial}) \pi(\tan(\pi t))^{\pm 1}$.

Definition 3.1. We define two "Plancherel polynomials" $P_{\tau}(t)$ and $Q_{\tau}(t)$ attached to τ by, $(-1)^{\dim X/2} vol(X)^{-1} \Delta_{\tau}(t) =$

$$= 1) \quad vol(X) \quad \Delta_{\tau}(l) =$$

 $-P_{\tau}(t)\pi \cot(\pi t) + Q_{\tau}(t)\pi \tan(\pi t).$ These polynomials are odd polynomials of degree No. 7]

 $(\dim X - 1)$, whose leading coefficients are positive.

Theorem 1. (a) Let $X = \Gamma \setminus G / K$ be an even dimensional compact locally symmetric space of rank one. For $\tau \in \hat{K}$, the gamma factor $\Gamma_{\tau}(s)$ for $Z_{\tau}(s)$ is expressed as follows:

$$\Gamma_{\tau}(s) = \prod_{l=1}^{\dim X/2} \Gamma_{(0,l)}(s)^{(-1)^{l-1}P_{\tau}(\dim X/2-l+1)} \\ \times \prod_{l=1}^{\dim X/2} \Gamma_{(1,l)}(s)^{(-1)^{l-1}Q_{\tau}(\dim X/2-l+\frac{1}{2})}.$$

Here, $\Gamma_{(0,1)}(s)$ and $\Gamma_{(1,1)}(s)$ are "bases" of gamma factors and independent of the representation τ . Let $c(X) = (-1)^{\dim X/2-1} vol(X)$, then these bases are described by the multiple gamma function of order dim X:

$$\Gamma_{(0,l)}(s) =$$

$$\left[\prod_{k=-(l-1)}^{l-1} \Gamma_{\dim X} \left(s - \rho_0 + \frac{\dim X}{2} + k\right)^{(-1)^k \binom{\dim X}{l-|k|-1}}\right]^{c(X)},$$

and

$$\Gamma_{(1,l)}(s) = \left[\prod_{k=0}^{l-1} \left(\Gamma_{\dim X}\left(s - \rho_0 + \frac{\dim X}{2} - k - \frac{1}{2}\right)\right)\right] \Gamma_{\dim X}\left(s - \rho_0 + \frac{\dim X}{2} + k + \frac{1}{2}\right)\right]^{(-1)^k \binom{\dim X}{l-k-1}} c^{(X)}$$

(b) $\Gamma_{\tau}(s)$ is depending only on "Plancherel polynomials" $P_{\tau}(t)$ and $Q_{\tau}(t)$. For τ , $\tau' \in \hat{K}$, $\Gamma_{\tau}(s) = \Gamma_{\tau'}(s)$

$$\Leftrightarrow P_{\tau}(l) = P_{\tau'}(l) \text{ and } Q_{\tau}\left(l - \frac{1}{2}\right) = Q_{\tau'}\left(l - \frac{1}{2}\right)$$

$$(l = 1 \quad \text{dim } X/2)$$

 $(l = 1, ..., \dim X/2)$ $\Leftrightarrow P_{\tau}(t) = P_{\tau'}(t) \text{ and } Q_{\tau}(t) = Q_{\tau'}(t)$ $\Rightarrow \dim \tau = \dim \tau'$

Remarks. (1) $\Gamma_r(z)$ is the multiple gamma function as in Kurokawa [3]: $\Gamma_r(z) = \exp\left(\frac{\partial}{\partial s} \zeta_r(s, z) \Big|_{s=0}\right)$, and $\zeta_r(s, z) = \sum_{n_1, \dots, n_r \ge 0} (n_1 + \dots + n_r + z)^{-s}$ is the multiple Hurwitz zeta function. This normalized multiple gamma function $\Gamma_r(z)$ has many properties similar to the usual gamma function $\Gamma(z)$. For example, $\Gamma_1(z) = (2\pi)^{-\frac{1}{2}} \Gamma(z)$, $\Gamma_0(z) = 1/z$, $\Gamma_r(z+1) = \Gamma_{r-1}(z)^{-1} \cdot \Gamma_r(z)$. etc.

(2) $\Gamma_r(s)$ for trivial τ have been obtained by Kurokawa [4]. Concerning non-trivial τ , only the case $G = SL(2, \mathbf{R})$ has hitherto considered (Sarnak[5]).

(3) "Bases" have a representation-theoretic meaning. Let us consider the case of G = SO(2n, 1). $\Gamma_{(1,l)}(s) = \Gamma_{v(l)}(s).$

 $\Gamma_{v(l)}(s)$ is the gamma factor for $Z_{v(l)}(s)$. The rep-

resentation $v(l) \in \widehat{M}$ satisfies the following: $Rep(M) \simeq \mathbf{Z}[v(1), \dots, v(n)].$

(See the section of Ruelle zeta functions for notations.) i.e. There is a correspondence between our bases of gamma factors and the basis of Rep(M).

4. Proofs. Let us introduce some polynomials which play key role to prove (a) of Theorem 1.

Proposition 4.1. For two odd polynomials

$$P_{k}(t) = t \prod_{j=1}^{k-1} (t^{2} - j^{2}) \text{ and } Q_{k}(t) = t \prod_{j=1}^{k-1} (t^{2} - (j - \frac{1}{2})^{2}), \ k \in \mathbf{N},$$

 $\exp\left(\int_{0}^{s-\rho_{0}} P_{k}(t)\pi \cot(\pi t) dt\right) = \left[\frac{\Gamma_{2k}(\rho_{0} - s + k)}{\Gamma_{2k}(s - \rho_{0} + k)}\right]^{-(2k-1)!},$
and
 $\exp\left(\int_{0}^{s-\rho_{0}} Q_{k}(t)\pi \tan(\pi t) dt\right) =$

$$\exp\left(\int_{0}^{\infty} Q_{k}(t)\pi\tan(\pi t)dt\right) = \left[\frac{\Gamma_{2k}(\rho_{0}-s-\frac{1}{2}+k)}{\Gamma_{2k}(s-\rho_{0}-\frac{1}{2}+k)}\frac{\Gamma_{2k}(\rho_{0}-s+\frac{1}{2}+k)}{\Gamma_{2k}(s-\rho_{0}+\frac{1}{2}+k)}\right]^{\frac{(2k-1)!}{2}}$$

Proof. Define the multiple sine function $S_r(z) = \Gamma_r(z)^{-1}\Gamma_r(r-z)^{(-1)^r}$, and use the differential equation of $S_r(z)$ [3]:

$$\frac{S_r'}{S_r}(z) = (-1)^{r-1} {\binom{z-1}{r-1}} \pi \cot(\pi z).$$

Next we apply the following lemma, and obtain theorem after some combinatorial calculations.

Lemma 4.2. For $\tau \in \hat{K}$, $P_{\tau}(t)$ and $Q_{\tau}(t)$ are expressed uniquely as **Q**-linear combination of above polynomials:

$$P_{\tau}(t) = \sum_{k=1}^{\dim X/2} a_k(\tau) P_k(t),$$
$$Q_{\tau}(t) = \sum_{k=1}^{\dim X/2} b_k(\tau) Q_k(t),$$
with $a_k(\tau), b_k(\tau) \in \mathbf{Q}.$

Proof. t^{2i-1} is uniquely expressed by $P_k(t)$'s (resp. $Q_k(t)$'s). For example $t = P_1(t)$, $t^3 = P_2(t) + P_1(t)$. etc. $t = Q_1(t)$, $t^3 = Q_2(t) + \frac{1}{4}Q_1(t)$. etc. And the lemma follows from the fact that $P_{\tau}(t)$ and $Q_{\tau}(t)$ are both odd polynomials.

To prove (b) of the theorem, the following lemma is fundamental:

Lemma 4.3. Let $f_r(z) = \prod_{k \in \mathbb{Z}} \Gamma_r(z+k)^{a_k}$ for a sequence of rational numbers $\{a_k\}_{k \in \mathbb{Z}}$. Then, $f_r(z) = 1 \Rightarrow \forall a_k = 0.$ *Proof.* $f_r(z)/f_r(z+1) = f_{r-1}(z)$ holds by using a property of multiple gamma functions. Therefore, $f_r(z) = 1$ implies $f_{r-1}(z) = 1$. We must prove the case r = 0, but this is trivial because $\Gamma_0(z) = 1/z$.

5. Functional equation of the Ruelle zeta function. Let us consider the case of G = SO(2n, 1). The Ruelle zeta function R(s) of X is defined for Re(s) > 2n - 1 by

$$R(s) = \prod_{p \in P_{\Gamma}} (1 - N(p)^{-s}),$$

where P_{Γ} is the set of all primitive hyperbolic conjugacy classes of $\Gamma = \pi_1(X)$ the fundamental group discretely embedded in *G*, and N(p) is the norm function. Fried [1] shows that R(s) can be written as a product of generalized Selberg zeta functions:

$$R(s) = \prod_{l=1}^{2n} Z_{v(l)}(s+l-1)^{(-1)^{l-1}},$$

 $v(l): M \to \wedge^{l-1}(\mathbb{C}^{2n-1})$ standard representations. where M is the centralizer of A in K under the Iwasawa decomposition G = KAN. In our case, K = SO(2n) and M = SO(2n - 1). We know that the gamma factor of $Z_{v(l)}(s)$ is $\Gamma_{v(l)}(s) =$ $\Gamma_{(1,l)}(s)$ from Theorem 1, $\rho_0 = n - \frac{1}{2}$ and dim X= 2n.

$$\begin{aligned} & \sum_{r_{v(l)}} \sum_{s=0}^{2n} \sum_{k=0}^{2n} \left[\prod_{k=0}^{l-1} (\Gamma_{2n}(s-k)\Gamma_{2n}(s+k+1))^{(-1)^{k} \binom{2n}{l-k-1}} \right]^{c(X)} \\ & = \sum_{k=0}^{2n} \sum_{k=0}^{2n} \sum_{k=0}^{2n} \sum_{k=0}^{2n} \sum_{s=0}^{2n} \sum_{k=0}^{2n} \sum_{k=0}^{2n} \sum_{k=0}^{2n} \sum_{k=0}^{2n} \sum_{s=0}^{2n} \sum_{k=0}^{2n} \sum_{k=0}^{2n} \sum_{k=0}^{2n} \sum_{k=0}^{2n} \sum_{k=0}^{2n} \sum_{k=0}^{2n} \sum_{s=0}^{2n} \sum_{k=0}^{2n} \sum_{k=$$

Theorem 2. Let $X = \Gamma \setminus SO(2n, 1)/SO(2n)$ be a compact real hyperbolic space. Then the Ruelle zeta function R(z) of X has the following functional equation:

(3)
$$R(z) \cdot R(-z) = (-4 \sin^2(\pi z))^{n \cdot c(X)}$$
.
Here, $c(X) = (-1)^{n-1} vol(X)$.
Proof. $R(z) \cdot R(-z)$
 $= \prod_{l=1}^{n} \left[\frac{Z_{v(l)}(z+l-1)}{Z_{v(l)}(-z+2n-l)} \frac{Z_{v(l)}(-z+l-1)}{Z_{v(l)}(z+2n-l)} \right]^{(-1)^{l-1}}$
 $= \prod_{l=1}^{n} \left[\prod_{k=0}^{l-1} (S_{2n}(z+l-k-1)) \frac{S_{2n}(z+l+k)}{S_{2n}(z+l+k)} \right]^{(-1)^{l-1} \cdot c(X)}$

$$\times \prod_{l=1}^{n} \left[\prod_{k=0}^{l-1} \left(S_{2n}(-z+l-k-1) \right) \right]^{(-1)^{l-1} \cdot c(X)}$$

$$S_{2n}(-z+l+k) \left(\sum_{l=k-1}^{l-1} \right)^{(-1)^{l-1} \cdot c(X)}$$

$$= \prod_{j=0}^{2n-1} \left(S_{2n}(z+j) S_{2n}(-z+j) \right)^{a(j) \cdot c(X)}$$

$$a(j) =$$

$$\begin{cases} (-1)^{j}(n-j)\binom{2n}{j} + (-1)^{j-1}b(j) & \cdots j = 0, \dots, n \\ (-1)^{j-1}b(j) & \cdots j = n+1, \dots, 2n-1 \end{cases}$$

$$b(j) = \sum_{\substack{j+1 \\ 2 \le l \le \min(n,j)}} \binom{2n}{2l-j-1} = b(2n-j)$$

$$= \prod_{\substack{j=0\\n-1}}^{n-1} (S_{2n}(z+j)S_{2n}(-z+j))^{(a(j)-a(2n-j)) \cdot c(X)}$$

$$= \prod_{\substack{j=0\\j=0}}^{n-1} (S_{2n}(z+j)S_{2n}(-z+j))^{(-1)'(n-j)\binom{2n}{j} \cdot c(X)}$$

$$= (S_1(s) \cdot S_1(-z))^{n \cdot c(X)}$$

$$= (-4 \sin^2(\pi z))^{n \cdot c(X)}.$$
 Q.E.D.

Remarks. We have used the known properties of multiple sine functions such as following in above calculations.

$$S_1(z) = \Gamma_1(z)^{-1} \Gamma_1(1-z)^{-1}$$

= $[(2\pi)^{-\frac{1}{2}} \Gamma(z) \cdot (2\pi)^{-\frac{1}{2}} \Gamma(1-z)]^{-1}$
= $2 \sin(\pi z)$.

and

$$S_{2n}(\alpha) \cdot S_{2n}(2n-\alpha) = 1,$$

and $S(z) \cdot S(-z)$

$$S_{1}(z) \cdot S_{1}(-z)$$

$$= \prod_{j=0}^{2n-1} (S_{2n}(z+j)S_{2n}(-z+j))^{(-1)^{j}\binom{2n-1}{j}}$$

$$= \prod_{j=0}^{n-1} (S_{2n}(z+j)S_{2n}(-z+j))^{\{(-1)^{j}\binom{2n-1}{j}-(-1)^{2n-j}\binom{2n-1}{2n-j}\}}$$

$$= \prod_{j=0}^{n-1} (S_{2n}(z+j)S_{2n}(-z+j))^{(-1)^{j}\binom{(n-j)}{n}\binom{2n}{j}}.$$

References

- [1] D. Fried: Analytic torsion and closed geodesics on hyperbolic manifolds. Invent. math., 84, 523-540 (1986).
- [2] R. Gangolli: Zeta functions of Selberg's type for compact space forms of symmetric spaces of rank one. Illinois J. Math., 21, 1-41 (1977).
- [3] N. Kurokawa: Lectures on multiple sine functions. Univ. of Tokyo, 1991 April-July, notes by Shin-ya Koyama.
- [4] N. Kurokawa: Gamma factors and Plancherel measures. Proc. Japan Acad., 68A, 256-260 (1992).
- [5] P. Sarnak: Determinants of Laplacians. Commun. Math. Phys., 110, 113-120 (1987).
- [6] M. F. Vignéras: L'equation fonctionnelle de la fonction zêta de Selberg du groupe PSL(2, Z). Société Mathématique de France Astérisque, 61, 235-249 (1979).
- [7] M. Wakayama: Zeta functions of Selberg's type associated with homogeneous vector bundles. Hiroshima Math. J., 15, 235-295 (1985).