Gamma Factors for Generalized Selberg Zeta Functions

By Yasuro GON
Department of Mathematical Sciences, University of Tokyo
(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1995)

1. Introduction. Let K be an algebraic number field such that $[K: \mathbf{Q}]<\infty$, and $\zeta_{K}(s)$ be the Dedekind zeta function of K. The completed Dedekind zeta function $\widehat{\zeta_{K}}(s)=\zeta_{K}(s) \cdot \Gamma_{K}(s)$ has the symmetric functional equation: $\widehat{\zeta_{K}}(1-s)=$ $\widehat{\zeta_{K}}(s)$. Here, the gamma factor is:

$$
\Gamma_{K}(s)=\left|D_{K}\right|^{\frac{s}{2}} \Gamma_{\mathbf{R}}(s)^{r_{1}(K)} \Gamma_{\mathbf{C}}(s)^{r_{2}(K)}
$$

where, D_{K} is the discriminant of $K, r_{1}(K)$ and $r_{2}(K)$ are the number of real and complex places of K respectively. We can consider $\Gamma_{\mathbf{R}}(s)=\pi^{-\frac{s}{2}}$ $\Gamma\left(\frac{s}{2}\right), \Gamma_{\mathbf{C}}(s)=\Gamma_{\mathbf{R}}(s) \Gamma_{\mathbf{R}}(s+1)$ as a "basis" of gamma factors corresponding to infinite places.

In this article we consider "gamma factors" for Selberg zeta functions. (cf. Vignéras[6], Sarnak [5], Kurokawa[3]). We give a neat expression of "gamma factors" as in the case of Dedekind zeta functions. (Theorem 1) Furthermore, we obtain a simple proof of the functional equation of the Ruelle zeta function $R(s)$ for a compact $2 n$ dimensional real hyperbolic space X (Theorem 2): $R(s) \cdot R(-s)=\left(-4 \sin ^{2}(\pi s)\right)^{n \cdot(-1)^{n-1} v o l(X)}$.

The author would like to express his profound gratitude to Professor N. Kurokawa for his valuable suggestions and encouragement.
2. Selberg zeta functions. Let G be a connected semisimple Lie group of rank one with finite conter, K be a maximal compact subgroup of G. Let Γ be a co-compact torsion-free discrete subgroup of G. Then $X=\Gamma \backslash G / K$ is a compact locally symmetric space of rank one. For a given irreducible unitary representation τ of K, we denote by $Z_{\tau}(s)$ the Selberg zeta functions of X with K-type τ as is introduced by Wakayama [7].

For example, let X be a compact Riemann surface of genus $g \geq 2$. Then $X=\Gamma \backslash H$ where $H=S L(2, \mathbf{R}) / S O(2)$ is the upper half plane, and Γ is the fundamental group $\pi_{1}(X)$ discretely embedded in $S L(2, \mathbf{R})$. For trivial τ, the Selberg zeta function $Z(s)$ of a compact Riemann surface is defined by the following Euler products:

$$
Z(s)=\prod_{p \in P_{\Gamma}} \prod_{k=0}^{\infty}\left(1-N(p)^{-(k+s)}\right)
$$

Here P_{Γ} is the set of all primitive hyperbolic conjugacy classes, and the norm function $N(p)=$ $\max \left\{\mid\right.$ eigenvalues of $\left.\left.p\right|^{2}\right\}$. For other rank one Lie groups and non-trivial $\tau, Z_{\tau}(s)$ is defined by similar but more complicated Euler products.

Selberg-Gangolli[2]-Wakayama[7] have shown that:
$Z_{\tau}(s)$ is meromorphic on \mathbf{C}, and tells informations about τ-spectrum:

$$
\hat{G}_{\tau}=\left\{\pi \in \hat{G}\left|m_{\Gamma}(\pi)>0, \pi\right|_{K} \ni \tau\right\}
$$

where $m_{\Gamma}(\pi)$ is the multiplicity of a unitary representation π of G in the right regular representation π_{Γ} of G on $L^{2}(\Gamma \backslash G)$. (and in our case $m_{\Gamma}(\pi)$ is finite for all π.)
$Z_{\tau}(s)$ has moreover the functional equation:
$Z_{\tau}\left(2 \rho_{0}-s\right)=\exp \left(\int_{0}^{s-\rho_{0}} \Delta_{\tau}(t) d t\right) Z_{\tau}(s)$.
where, $\rho_{0}>0$ is a constant depending only on G and $\Delta_{\tau}(t)$ is the "Plancherel" density with K-type τ, whose explicit formula is found in [7]. Hereafter we use renormalized ρ_{0} and $\Delta_{\tau}(t)$ like as [4].
3. Gamma factors. we shall express the exponential factor of the functional equation (1) as $\Gamma_{\tau}(s) / \Gamma_{\tau}\left(2 \rho_{0}-s\right)$ by the "gamma factor" $\Gamma_{\tau}(s)$ so that the completed Selberg zeta function $\widehat{Z_{\tau}}(s)=Z_{\tau}(s) \Gamma_{\tau}(s)$ will satisfy the symmetric functional equation:
(2) $\quad \widehat{Z_{\tau}}\left(2 \rho_{0}-s\right)=\widehat{Z_{\tau}}(s)$

If $\operatorname{dim} X$ is odd, the "Plancherel" density $\Delta_{\tau}(t)$ is a polynomial and "gamma factor" is trivial. Hereafter we suppose that $\operatorname{dim} X$ is even, i.e. $G=S O(2 n, 1), S U(n, 1), S p(n, 1), F_{4} \quad$ Then the "Plancherel" density is given by $\Delta_{\tau}(t)=$ $\sum_{\text {finite sun }}$ (odd polynomial) $\pi(\tan (\pi t))^{ \pm 1}$.

Definition 3.1. We define two "Plancherel polynomials" $P_{\tau}(t)$ and $Q_{\tau}(t)$ attached to τ by,
$(-1)^{\operatorname{dim} X / 2} \operatorname{vol}(X)^{-1} \Delta_{\tau}(t)=$

$$
-P_{\tau}(t) \pi \cot (\pi t)+Q_{\tau}(t) \pi \tan (\pi t)
$$

These polynomials are odd polynomials of degree
($\operatorname{dim} X-1$), whose leading coefficients are positive.

Theorem 1. (a) Let $X=\Gamma \backslash G / K$ be an even dimensional compact locally symmetric space of rank one. For $\tau \in \hat{K}$, the gamma factor $\Gamma_{\tau}(s)$ for $Z_{\tau}(s)$ is expressed as follows:

$$
\begin{aligned}
\Gamma_{\tau}(s)= & \prod_{l=1}^{\operatorname{dim} X / 2} \Gamma_{(0, l)}(s)^{(-1)^{l-1} P_{\tau}(\operatorname{dim} X / 2-l+1)} \\
& \times \prod_{l=1}^{\operatorname{dim} X / 2} \Gamma_{(1, l)}(s)^{(-1)^{l-1} Q_{\tau}\left(\operatorname{dim} X / 2-l+\frac{1}{2}\right)}
\end{aligned}
$$

Here, $\Gamma_{(0, l)}(s)$ and $\Gamma_{(1, l)}(s)$ are "bases" of gamma factors and independent of the representation τ. Let $c(X)=(-1)^{\operatorname{dim} X / 2-1} \operatorname{vol}(X)$, then these bases are described by the multiple gamma function of order $\operatorname{dim} X$:
$\Gamma_{(0, l)}(s)=$

$$
\left[\prod_{k=-(l-1)}^{l-1} \Gamma_{\operatorname{dim} X}\left(s-\rho_{0}+\frac{\operatorname{dim} X}{2}+k\right)^{(-1)^{k}\left(\left(\operatorname{dim}_{l-|k|-1}\right)\right.}\right]^{c(X)}
$$

and
$\Gamma_{(1, l)}(s)=\left[\prod_{k=0}^{l-1}\left(\Gamma_{\operatorname{dim} X}\left(s-\rho_{0}+\frac{\operatorname{dim} X}{2}-k-\frac{1}{2}\right)\right.\right.$ $\left.\left.\Gamma_{\operatorname{dim} X}\left(s-\rho_{0}+\frac{\operatorname{dim} X}{2}+k+\frac{1}{2}\right)\right)^{(-1)^{k}\binom{\operatorname{dim} X}{l-k-1}}\right]^{c(X)}$.
(b) $\Gamma_{\tau}(s)$ is depending only on "Plancherel polynomials" $P_{\tau}(t)$ and $Q_{\tau}(t)$. For $\tau, \tau^{\prime} \in \hat{K}$,
$\Gamma_{\tau}(s)=\Gamma_{\tau^{\prime}}(s)$
$\Leftrightarrow P_{\tau}(l)=P_{\tau^{\prime}}(l)$ and $Q_{\tau}\left(l-\frac{1}{2}\right)=Q_{\tau^{\prime}}\left(l-\frac{1}{2}\right)$
$(l=1, \ldots, \operatorname{dim} X / 2)$
$\Leftrightarrow P_{\tau}(t)=P_{\tau^{\prime}}(t)$ and $Q_{\tau}(t)=Q_{\tau^{\prime}}(t)$
$\Rightarrow \operatorname{dim} \tau=\operatorname{dim} \tau^{\prime}$
Remarks. (1) $\Gamma_{r}(z)$ is the multiple gamma function as in Kurokawa [3]: $\Gamma_{r}(z)=\exp \left(\frac{\partial}{\partial s}\right.$ $\left.\left.\zeta_{r}(s, z)\right|_{s=0}\right)$, and $\zeta_{r}(s, z)=\sum_{n_{1}, \cdots, n_{r} \geq 0}\left(n_{1}+\cdots+\right.$ $\left.n_{r}+z\right)^{-s}$ is the multiple Hurwitz zeta function. This normalized multiple gamma function $\Gamma_{r}(z)$ has many properties similar to the usual gamma function $\Gamma(z)$. For example, $\Gamma_{1}(z)=$ $(2 \pi)^{-\frac{1}{2}} \Gamma(z), \Gamma_{0}(z)=1 / z, \Gamma_{r}(z+1)=\Gamma_{r-1}(z)^{-1}$. $\Gamma_{r}(z)$. etc.
(2) $\Gamma_{r}(s)$ for trivial τ have been obtained by Kurokawa [4]. Concerning non-trivial τ, only the case $G=S L(2, \mathbf{R})$ has hitherto considered (Sarnak[5]).
(3) "Bases" have a representation-theoretic meaning. Let us consider the case of $G=S O(2 n, 1)$.

$$
\Gamma_{(1, l)}(s)=\Gamma_{v(l)}(s)
$$

$\Gamma_{v(l)}(s)$ is the gamma factor for $Z_{v(l)}(s)$. The rep-
resentation $v(l) \in \widehat{M}$ satisfies the following:

$$
\operatorname{Rep}(M) \simeq \mathbf{Z}[v(1), \ldots, v(n)]
$$

(See the section of Ruelle zeta functions for notations.) i.e. There is a correspondence between our bases of gamma factors and the basis of $R e p(M)$.
4. Proofs. Let us introduce some polynomials which play key role to prove (a) of Theorem 1.

Proposition 4.1. For two odd polynomials $P_{k}(t)=t \Pi_{j=1}^{k-1}\left(t^{2}-j^{2}\right)$ and $\quad Q_{k}(t)=t \Pi_{j=1}^{k-1}\left(t^{2}-\right.$ $\left.\left(j-\frac{1}{2}\right)^{2}\right), k \in \mathbf{N}$,
$\exp \left(\int_{0}^{s-\rho_{0}} P_{k}(t) \pi \cot (\pi t) d t\right)=\left[\frac{\Gamma_{2 k}\left(\rho_{0}-s+k\right)}{\Gamma_{2 k}\left(s-\rho_{0}+k\right)}\right]^{-(2 k-1)!}$,
and

$$
\begin{aligned}
& \exp \left(\int_{0}^{s-\rho_{0}} Q_{k}(t) \pi \tan (\pi t) d t\right)= \\
& {\left[\frac{\Gamma_{2 k}\left(\rho_{0}-s-\frac{1}{2}+k\right)}{\Gamma_{2 k}\left(s-\rho_{0}-\frac{1}{2}+k\right)} \frac{\Gamma_{2 k}\left(\rho_{0}-s+\frac{1}{2}+k\right)}{\Gamma_{2 k}\left(s-\rho_{0}+\frac{1}{2}+k\right)}\right]^{\frac{(2 k-1)!}{2}}}
\end{aligned}
$$

Proof. Define the multiple sine function $S_{r}(z)=\Gamma_{r}(z)^{-1} \Gamma_{r}(r-z)^{(-1)^{r}}$, and use the differential equation of $S_{r}(z)$ [3]:

$$
\frac{S_{r}^{\prime}}{S_{r}}(z)=(-1)^{r-1}\binom{z-1}{r-1} \pi \cot (\pi z)
$$

Next we apply the following lemma, and obtain theorem after some combinatorial calculations.

Lemma 4.2. For $\tau \in \hat{K}, P_{\tau}(t)$ and $Q_{\tau}(t)$ are expressed uniquely as \mathbf{Q}-linear combination of above polynomials:

$$
\begin{gathered}
P_{\tau}(t)=\sum_{k=1}^{\operatorname{dim} X / 2} a_{k}(\tau) P_{k}(t), \\
Q_{\tau}(t)=\sum_{k=1}^{\operatorname{dim} X / 2} b_{k}(\tau) Q_{k}(t), \\
\text { with } a_{k}(\tau), b_{k}(\tau) \in \mathbf{Q}
\end{gathered}
$$

Proof. $t^{2 i-1}$ is uniquely expressed by $P_{k}(t)$'s (resp. $\left.Q_{k}(t) ' s\right)$. For example $t=P_{1}(t), t^{3}=$ $P_{2}(t)+P_{1}(t)$. etc. $t=Q_{1}(t), t^{3}=Q_{2}(t)+\frac{1}{4} Q_{1}(t)$. etc. And the lemma follows from the fact that $P_{\tau}(t)$ and $Q_{\tau}(t)$ are both odd polynomials.

To prove (b) of the theorem, the following lemma is fundamental:

Lemma 4.3. Let $f_{r}(z)=\Pi_{k \in \mathbf{Z}} \Gamma_{r}(z+k)^{a_{k}}$ for a sequence of rational numbers $\left\{a_{k}\right\}_{k \in \mathbf{Z}}$. Then, $f_{r}(z)=1 \Rightarrow \forall a_{k}=0$.

Proof. $\quad f_{r}(z) / f_{r}(z+1)=f_{r-1}(z)$ holds by using a property of multiple gamma functions. Therefore, $f_{r}(z)=1$ implies $f_{r-1}(z)=1$. We must prove the case $r=0$, but this is trivial because $\Gamma_{0}(z)=1 / z$.
5. Functional equation of the Ruelle zeta function. Let us consider the case of $G=$ $S O(2 n, 1)$. The Ruelle zeta function $R(s)$ of X is defined for $\operatorname{Re}(s)>2 n-1$ by

$$
R(s)=\prod_{p \in P_{\Gamma}}\left(1-N(p)^{-s}\right),
$$

where P_{Γ} is the set of all primitive hyperbolic conjugacy classes of $\Gamma=\pi_{1}(X)$ the fundamental group discretely embedded in G, and $N(p)$ is the norm function. Fried [1] shows that $R(s)$ can be written as a product of generalized Selberg zeta functions:

$$
R(s)=\prod_{l=1}^{2 n} Z_{v(l)}(s+l-1)^{(-1)^{l-1}}
$$

$v(l): M \rightarrow \wedge^{l-1}\left(\mathbf{C}^{2 n-1}\right)$ standard representations. where M is the centralizer of A in K under the Iwasawa decomposition $G=K A N$. In our case, $K=S O(2 n)$ and $M=S O(2 n-1)$. We know that the gamma factor of $Z_{v(l)}(s)$ is $\Gamma_{v(l)}(s)=$ $\Gamma_{(1, l)}(s)$ from Theorem 1, $\rho_{0}=n-\frac{1}{2}$ and $\operatorname{dim} X$ $=2 n$:

$$
\Gamma_{v(l)}(s)=
$$

$$
\left[\prod_{k=0}^{l-1}\left(\Gamma_{2 n}(s-k) \Gamma_{2 n}(s+k+1)\right)^{\left.(-1)^{k}\binom{2 n}{l-k-1}\right]^{c(X)} ~ . ~}\right.
$$

Theorem 2. Let $X=\Gamma \backslash S O(2 n, 1) / S O(2 n)$ be a compact real hyperbolic space. Then the Ruelle zeta function $R(z)$ of X has the following functional equation:
(3) $\quad R(z) \cdot R(-z)=\left(-4 \sin ^{2}(\pi z)\right)^{n \cdot c(X)}$. Here, $c(X)=(-1)^{n-1} \operatorname{vol}(X)$.

$$
\text { Proof. } \quad R(z) \cdot R(-z)
$$

$=\prod_{l=1}^{n}\left[\frac{Z_{v(l)}(z+l-1)}{Z_{v(l)}(-z+2 n-l)} \frac{Z_{v(l)}(-z+l-1)}{Z_{v(l)}(z+2 n-l)}\right]^{(-1)^{l-1}}$
$=\prod_{l=1}^{n}\left[\prod_{k=0}^{l-1}\left(S_{2 n}(z+l-k-1)\right.\right.$

$$
\left.S_{2 n}(z+l+k)\right)^{\left.(-1)^{k}\binom{2 n}{l-k-1}\right]^{(-1)^{l-1} \cdot c(X)}}
$$

$$
\times \prod_{l=1}^{n}\left[\prod _ { k = 0 } ^ { l - 1 } \left(S_{2 n}(-z+l-k-1)\right.\right.
$$

$$
\left.S_{2 n}(-z+l+k)\right)^{\left.(-1)^{k}\binom{2 n}{l-k-1}\right]^{(-1)^{l-1} \cdot c(X)}}
$$

$$
=\prod_{j=0}^{2 n-1}\left(S_{2 n}(z+j) S_{2 n}(-z+j)\right)^{a(j) \cdot c(X)}
$$

$a(j)=$

$$
\begin{aligned}
& \left(\begin{array}{ll}
(-1)^{j}(n-j)\binom{2 n}{j}+(-1)^{j-1} b(j) & \cdots j=0, \ldots, n \\
(-1)^{j-1} b(j) & \cdots j=n+1, \ldots, 2 n-1
\end{array}\right. \\
& b(j)=\begin{array}{c}
\sum_{\frac{j+1}{2} \leq l \leq \min (n, j)}\binom{2 n}{2 l-j-1}=b(2 n-j)
\end{array} \\
& =\prod_{j=0}^{n-1}\left(S_{2 n}(z+j) S_{2 n}(-z+j)\right)^{(a(j)-a(2 n-j)) \cdot c(X)} \\
& =\prod_{j=0}^{n-1}\left(S_{2 n}(z+j) S_{2 n}(-z+j)\right)^{(-1)^{\prime}(n-\jmath)\binom{2 n}{j} \cdot c(X)} \\
& =\left(S_{1}(s) \cdot S_{1}(-z)\right)^{n \cdot c(X)} \\
& =\left(-4 \sin ^{2}(\pi z)\right)^{n \cdot c(X)} .
\end{aligned}
$$

Remarks. We have used the known properties of multiple sine functions such as following in above calculations.

$$
\begin{aligned}
S_{1}(z) & =\Gamma_{1}(z)^{-1} \Gamma_{1}(1-z)^{-1} \\
& =\left[(2 \pi)^{-\frac{1}{2}} \Gamma(z) \cdot(2 \pi)^{-\frac{1}{2}} \Gamma(1-z)\right]^{-1} \\
& =2 \sin (\pi z)
\end{aligned}
$$

and

$$
S_{2 n}(\alpha) \cdot S_{2 n}(2 n-\alpha)=1
$$

and

$$
\begin{aligned}
& S_{1}(z) \cdot S_{1}(-z) \\
& =\prod_{j=0}^{2 n-1}\left(S_{2 n}(z+j) S_{2 n}(-z+j)\right)^{(-1)^{\prime}\binom{2 n-1}{j}} \\
& =\prod_{j=0}^{n-1}\left(S_{2 n}(z+j) S_{2 n}(-z+j)\right)^{\left.(-1)^{\prime}\binom{2 n-1}{j}-(-1)^{2 n-1}\binom{2 n-1}{2 n-j}\right\}} \\
& =\prod_{j=0}^{n-1}\left(S_{2 n}(z+j) S_{2 n}(-z+j)\right)^{(-1)^{\prime} \frac{(n-j)}{n}\binom{2 n}{,} .}
\end{aligned}
$$

References

[1] D. Fried: Analytic torsion and closed geodesics on hyperbolic manifolds. Invent. math., 84, 523-540 (1986).
[2] R. Gangolli: Zeta functions of Selberg's type for compact space forms of symmetric spaces of rank one. Illinois J. Math., 21, 1-41 (1977).
[3] N. Kurokawa: Lectures on multiple sine functions. Univ. of Tokyo, 1991 April-July, notes by Shin-ya Koyama.
[4] N. Kurokawa: Gamma factors and Plancherel measures. Proc. Japan Acad., 68A, 256-260 (1992).
[5] P. Sarnak: Determinants of Laplacians. Commun. Math. Phys., 110, 113-120 (1987).
[6] M. F. Vignéras: L'equation fonctionnelle de la fonction zêta de Selberg du groupe $\operatorname{PSL}(2, \mathbf{Z})$. Société Mathématique de France Astérisque, 61, 235-249 (1979).
[7] M. Wakayama: Zeta functions of Selberg's type associated with homogeneous vector bundles. Hiroshima Math. J., 15, 235-295 (1985).

