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Small Stable Stationary Solutions in Morrey Spaces of
the Navier-Stokes Equation

By Hideo KOZONO *) and Masao YAMAZAKI* *)

(Communicated by Kiyosi ITS, M. J. A., Nov. 13, 1995)

Recently, many authors studied the Cauchy
problem for the Navier-Stokes equation in Rn

in
the framework of Morrey spaces. For example,
Giga and Miyakawa [2] and Kato [3] gave suffi-
cient conditions for the unique existence of
time-global solutions. For previous papers re-

lated to this problem, see the references of Kozo-
no and Yamazaki [4], which studied the above
Cauchy problem in new function spaces larger
than the corresponding Morrey spaces. However,
these papers considered only the case where the
external force vanishes identically or decays as
t C

The purpose of this paper is to generalize
the results on the global solvability in the works
above to the case with a stationary external force
by showing the unique existence and the stability
of a small stationary solution in suitable Morrey
spaces under appropriate assumptions on the ex-
ternal force.

More precisely, we consider the following
stationary Navier-Stokes equation with an exter-
nal force f(x) in Rn

for n _> 3:
Axw(X) + (w(x) x) w(x)

+ Vx(X) =/(x),
(2) Vx’ w(x) o,
and find a sufficient condition on f(x) for the un-
ique existence of a small solution of (1)-(2) in

suitable Morrey spaces.
We also verify the stability of the above sta-

tionary solution by showing the time-global uni-
que solvability and giving a bound of the solution
of the following nonstationary Navier-Stokes
equation in (0, c) Rx with the same external
force as above:

Ov "t(3) - x) AxV(t, x) + (v(t, x) Fx)V(t, x)
+ 7xq (t, x) f(x),

*) Graduate School of Mathematics, Nagoya Uni-

versity.
**) Department of Mathematics, Hitotsubashi Uni-

versity.

(4) F. v(t, x) O,
(5) v(O, x) a(x) on R:,
for the Cauchy data a(x) close enough to the sta-
tionary solution.

Furthermore, we can take initial values in
suitable function spaces introduced by [4]. These
spaces are strictly larger than the corresponding
Morrey spaces, and contain distributions other
than Radon measures.

We start with the definition of the function
spaces. Let p, q and s be real numbers such that
1 <_ q <--p, and suppose that r [1, co]. Then
the Morrey space ,/l, on Rn

is defined to be the
set of functions u(x) Lo(R) such that

u l ,,q sup supR
xoR R>0

(ix lu(x) <
-Xo <R

We next define the space 2//, by the formula

where ’ and denote the set of tempered dis-
tributions on Rn

and the set of polynomials with
n variables respectively.

Furthermore, we define the space A/,q,r after
[4] as the set of u(x) 3’/ such that

,////,,q erll <
(2-)where {p }j=_= is a homogeneous Littlewood-

Paley partition of unity. (See Bergh and L6fstr6m
[1] for example.)

sThen it is shown in [4] that A/,q, c 1,
A/,q,=, and that the spaces M;,q and A/,q,r can be
canonically regarded as a subspace of .’ if
s<n/p.

Now we can state our main results.
Theorem A. Suppose that r satisfies 2 < r

<-- n. Then there exist a positive number co and a
continuous, strictly monotone- increasing function
o(() on [0, o] satisfying co(0) 0 such that the
following hold"

(1) For every f(x) (’) n, there exists at
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most one solution w(x) of (1)-(2) in Jn,r
satisfying the condition w lin,r
W(o).

(2) For every f (x) (n,r) satisfying --I1 1 ;,  11
w(x) (l,r) of (1)-(2) such that

Example 1. Suppose that n _> 4, and let
be an integer satisfying 2 < r < . Next, let
(w(x,.- ,, xr),.-., wr(x,. -.,xr)) be a suffi-
ciently small function in Lr(R r) satisfying (2) on
Rr, and put ]--- A x + I7z())on Rr.
Then w- (:, 0) and f (f, 0) satisfies (1)-(2)
Rn"on Moreover, we have w ,r and f
Rn"on Hence we can treat solutions w(x) which

does not necessarily satisfy w(x)----0

Theorem B. Let r be the same as in Theorem
A, and suppose that p, q and ao satisfy n/2
oo, 1 < q <_ pr/n and n/2p < ao < min {1, n/p}.
Further, let w (x) be the solution of (1)-(2) given
in Theorem A, (2). Then there exists a positive hum-

-2
bet 61 <_ o such that, for every f(x) (llu,r)
satisfying IIfl ,////2r < 5. there exist positive num-
bers so and Mo such that, for every a(x)

..n/p-1
llp,q satisfying I7x" a(x) 0 and s--

jn/p-1a(x) <
a time-global solution v(t, x) of (3)-(4) satisfying
the conditions

(6) sup tv-"/4’ v(t w / <’,’p,q
0<t<: T"

for every T’ > O,
(7) lim sup tx/2-n/4p v(t )

t0

<Mo,
and the initial condition (5) in the following sense"

For every s such that 1

_
s <_ n /p 1 and for

every T" ) O, we have
$

(S) sup t
s/2+l/2-n/2p v(t, a lip,q < .

0<t T’
Moreover, for every T such that 0 < T <- oo, any
solution of (3)-(4) on (0, T) x R satisfying (6)
for every T’ (0, T), (7) and v(t, ")--a---*O

-1
in ,q coincides with the restriction on (0, T) x
Rn

of the above solution.
Furthermore, for every a such that n/p-

1 <_ <_ o, there exists a continuous, strictly
monotone-increasing function ba(s) on [0, So]
satisfying Ca(0) 0 such that the estimate

(9) supt/2+l/z-n/z v(t,

holds if s < so.
AAn/P-Remark 2. If p > n, we have n r C *p,pr/n

2//q-1. Hence the estimate (9) with a- n/p
I in Theorem B, together with the fact lim_.+o

Cn/_l(s) 0, asserts the Lyapunov stability of
the stationary solution w(x)in the topology of

,q In particular, we can put p- n and q-- r
in Theorem B, and in this case the above fact im-

plies the Lyapunov stability of w(x) in the space

d///n, itself.
The estimate (9) with a > n/p- 1 asserts

the asymptotic stability of w(x) in different topo-
logies" more precisely, the rate of the converg-
ence in

Remark 3. In Theorem B, the solution
v(t, x) may not be strongly continuous at t 0
in d////{ -1. Hence, in order to ensure the unique-
ness, we must assume a condition on some sort of
smallness near t- 0 like (7).

Example 4. Suppose that 1--< nl < n, and
put x’-- (xl,-" ", :c) for x- (xl,’", Xn). Then
we have

(-- Ax)’n-nlp’/2P(X’) C X’ -n/p J[/lp,q
Ron for every p and q such that 1 q nxp/n.
In particular, we can take a(x)- w(x)+

s (0,-" ", 0, 6(x1)) in Theorem B provided the
constant s is sufficiently small, since 6(xl)

,q holds for every p and q such that 1 < q
< p/n. This case is treated by Kato [3].

Next, in view of the Biot-Savard law, we can
take

( -x2 Xl ,0...,0)a(x) w(x) + s x + x:’ x + x:
in Theorem B provided the constant s is suffi-
ciently small, since

AAn/p-1(- A x)-’(x, x)
holds for every p and q such that 1 q 2p/n.
This case is treated by Giga and Miyakawa [2].

Theorem C. Let p, q, r, go, f(x) and w(x)
be the same as in Theorem B. Then there exist posi-
tive numbers sl and M such that, for every

(h/’n/p-ln satisfying I7x a(x) 0 anda(x)
A/nip-1s a(x) w(x) l,.q,oo < sl, there uniquely

exists a time-global solution v(t, x) of (3)-(4)
satisfying the conditions (6) for every T"
(0, oo), (7) with Mo replaced by M1, and (8)for ev-

ery s such that 1 <-- s < n /p-- 1 and every
T’>0.

Moreover, for every T such that 0 < T <- 00,

any solution of (3)-(4) on (0, T) Rn
satisfying
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(6) for every T’ (0, T), (7) and v(t, a--
--10 in p,q coincides with the restriction on (0, T)

tn
of the above solution.
Furthermore, there exists a continuous, strictly

monotone-increasing function b() on [0, s1] satis-

fying qb(O) 0 such that the estimate

(10) sup v(t w A/n/p-1 <p,q,
t>0

holds f t , and for every such that n /p--
1 o, there exists a continuous, strictly
monotone- ncreasng function (t) on [0,
satisfying (0) 0 such that the estimate

sup t+- v<t, w l,
t>0

(s)
holds if

Example 5. It was shown in [4] that the
1

distribution p.v. m belongs to the space

if p > n, and q- p/n enjoys the condition of
Theorem C for every r. Hence we can take a w

+ s 0,’’’, O, p.v. in Theorem C, provided

the constant s is sufficiently small.
Remark 6. If p 2 n, Remark 2 and the

property of he space Nq r imply the inclusion
relation .r ’,q :v ,q,. hence the esti-
mate (10) and the fact lim_+o(S) 0 assert the
Lyapunov stability of the stationary solution

Afnl-iw(m) in the topology of ,q,.

The estimate (11) asserts the asymptotic sta-
bility of w (x) in different topologies; more pre-
cisely, the rate of the convergence in

Remark 7. The main result of [4] on the
Navier-Stokes equation can be regarded as the
stability of the stationary solution 0 of the equa-
tion (1)-(2) with the external force f=--0. Hence
Theorem 3 can be regarded as a generalization of
the above results to the case with more general
stationary solutions. As is described in these
papers, our function spaces is strictly larger than
the ones considered in [2] and [3].

Details will be published elsewhere.
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