Note on Siegel-Eisenstein Series

By Shoyu NAGAOKA

Department of Mathematics, Kinki University (Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1995)

1. Siegel-Eisenstein series. In this paper, we will treat two types of Eisenstein series and give some remarks. Let H_n be the Hermitian upper half space of degree n, namely, the domain consisting of all complex square matrices of size n such that the Hermitian imaginary part $\Im(Z) := (2i)^{-1}(Z - \bar{Z}^T)$ is positive definite. Here \bar{Z}^T is the transpose, complex conjugate matrix of Z. The Siegel upper half space $S_n := \{Z \in H_n \mid Z^T = Z\}$ is a submanifold of H_n . If $Z \in S_n$, then $I(Z) := \Im(Z)$ is exactly equal to the imaginary part of Z. Consider an imaginary quadratic field K of discriminant d_K . The ring of integers in K is denoted by $\mathscr{O} = \mathscr{O}_K$. The Hermitian modular group of degree n associated with K is defined as:

$$\Gamma_n(K) := \left\{ M \in SL_{2n}(\mathcal{O}) \mid \bar{M}^T J_n M = J_n, J_n = \begin{pmatrix} 0_n & E_n \\ -E_n & 0_n \end{pmatrix} \right\}.$$

The Siegel modular group of degree n is defined as $\Gamma_n := Sp_n(\mathbf{Z})$. Let $[\Gamma_n, k]$ (resp. $[\Gamma_n(K), k]$) be the vector space of holomorphic Siegel modular forms (resp. Hermitian modular forms) of weight k for Γ_n (resp. $\Gamma_n(K)$).

Let us consider the Eisenstein series of the following two types:

$$(SP \ Case) \\ E_k^{(n)}(Z, s) := \det I(Z)^s \sum_{\stackrel{(\stackrel{*}{CD}) \in \Gamma_{n,0} \setminus \Gamma_n}{(CD) \in \Gamma_{n,0} \setminus \Gamma_n}} \det (CZ + D)^{-k} |\det (CZ + D)|^{-2s}, Z \in S_n$$

$$(SU \ Case) \\ E_{k,K}^{(n)}(Z, s) := \det \Im(Z)^s \sum_{\stackrel{(\stackrel{*}{CD}) \in \Gamma_n(K)_0 \setminus \Gamma_n(K)}{(CD) \in \Gamma_n(K)_0 \setminus \Gamma_n(K)}}$$

 $\det(CZ+D)^{-k} |\det(CZ+D)|^{-2s}, Z \in \pmb{H}_n$ Here k is an even integer and $\Gamma_{n,0}$ (resp. $\Gamma_n(K)_0$) is the subgroup of Γ_n (resp. $\Gamma_n(K)$) consisting of the elements $\pmb{M} = \begin{pmatrix} A & B \\ 0_n & D \end{pmatrix}$ in Γ_n (resp. $\Gamma_n(K)$). It is known that $E_k^{(n)}(Z,s)$ (resp. $E_{k,K}^{(n)}(Z,s)$) is convergent for $\operatorname{Re}(s) > (n+1-k)/2$ (resp. $\operatorname{Re}(s) > (2n-k)/2$). Moreover, they can be continued as meromorphic functions in s to the

whole complex plane. The analytic properties of these Eisenstein series were successfully studied by Shimura [5] and Weissauer [6]. In fact, Shimura found the following results.

Theorem 1 (Shimura). (1) (SP Case) $E_{n-1}^{(n)}$ (Z, s) has at most a simple pole at s=1. The residue at s=1 is π^{-n} times an element f in $\left[\Gamma_n, \frac{n-1}{2}\right]$ with rational Fourier coefficients.

(2) (SU Case) $E_{n-1,K}^{(n)}(Z,s)$ has at most a simple pole at s=1. The residue at s=1 is π^{-n} times an element f in $[\Gamma_n(K), n-1]$ with rational Fourier coefficients.

Remark 1. The definition of Eisenstein series in [5] is slightly different from our definition. The Eisenstein series Shimura treated were $\det I(Z)^{-\frac{s}{2}}E_k^{(n)}\left(Z,\frac{s}{2}\right)$ (SP Case) and $\det \Im(Z)^{-\frac{s}{2}}E_{k,K}^{(n)}\left(Z,\frac{s}{2}\right)$ (SU Case) in our notation.

2. A residue formula. Our purpose is to specify the modular forms f in Theorem 1. The first result is as follows:

Theorem 2. (1) For any even, positive integer k such that $k < \frac{n+1}{2}$, $E_k^{(n)}(Z, s)$ is holomorphic in s at s = 0 and $E_k^{(n)}(Z, 0)$ defines an element of $[\Gamma_n, k]$ with rational Fourier coefficients.

(2) Assume that the class number of K is 1. For any even, positive integer k such that k < n, $E_{k,K}^{(n)}(Z,s)$ is holomorphic in s at s=0 and $E_{k,K}^{(n)}(Z,0)$ defines an element of $[\Gamma_n(K),k]$ with rational Fourier coefficients.

A proof of (1) was already given in Weissauer [6]. Another proof is found by using results of Arakawa [1] and Mizumoto [3].

Here we must introduce the following notation:

$$\xi(s) := \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s),$$

$$\xi(s; \chi_K) := \pi^{-\frac{s}{2}} |d_K|^{\frac{s}{2}} \Gamma\left(\frac{s+1}{2}\right) L(s; \chi_K),$$

$$\xi_{K}(s) := \xi(s)\xi(s; \chi_{K}) = \pi^{-s} \left| d_{K} \right|^{\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right) \zeta_{K}(s),$$

where $\Gamma(s)$: the gamma function, $\zeta(s)$: the Riemann zeta function, $L(s;\chi_K)$: the Dirichlet L-function associated with the Kronecker character χ_K , $\zeta_K(s)$: the Dedekind zeta function of K:

Theorem 3. (1) (SP Case) Let m and n be integers satisfying $0 \le m < n$, $n \equiv m \pmod{4}$. Then the residue of $E_{\frac{n-m}{2}}^{(n)}(Z, s)$ at $s = \frac{m+1}{2}$ is given by

Res
$$E_{j=0}^{(n)}(Z,s) = (-1)^{\frac{n(n-m)}{4}}2^{-2}$$

$$\times \prod_{j=0}^{\frac{n-m-4}{4}} \frac{(m+1+2j)!(\frac{n-m}{2}+2j)!}{(2j)!(\frac{n+m}{2}+1+2j)!}$$

$$\times \frac{\xi(\frac{n-m}{2})}{\xi(\frac{n+m}{2}+1)} \frac{\prod_{j=0}^{m-1}\xi(i+2)}{\prod_{j=0}^{m}\xi(n+m-2l)} E_{\frac{n-m}{2}}^{(n)}(Z,0).$$

(2) (SU Case) Assume that the class number of K is 1. Let m and n be integers satisfying $1 \le m < n$, $n \equiv m \pmod{2}$. Then the residue of $E_{n-m,K}^{(n)}(Z, s)$ at s = m is given by $\operatorname{Res} E_{n-m,K}^{(n)}(Z, s) = (-1)^{\frac{(n+1)(n-m)}{2}}2^{-1}$

$$\operatorname{Res}_{s=m} E_{n-m,K}^{(n)}(Z, s) = (-1)^{\frac{(m+1)(n-m)}{2}} 2^{-1}$$

$$\times \prod_{j=0}^{\frac{n-m-2}{2}} \frac{(m+j)! (\frac{n-m}{2}+j)!}{j! (\frac{n+m}{2}+j)!}$$

$$\times \frac{\xi(1; \chi_K) \prod_{i=0}^{m-2} \xi_K(i+2)}{\prod_{j=0}^{2m-1} \xi(n+m-l; \chi_K^l)} E_{n-m,K}^{(n)}(Z, 0).$$

Here we understand that $\xi(s; \chi_K^m) = \xi(s)$ if m is even; $= \xi(s; \chi_K)$ if m is odd.

Using the theory of singular modular forms, we can get the following corollaries:

Corollary 1. (1) (SP Case) If $0 \le m < n$ and $n \equiv m + 4 \pmod{8}$, then $E_{\frac{n-m}{2}}^{(n)}(Z, s)$ is holomorphic at $s = \frac{m+1}{2}$.

(2) (SU Case) Assume that the class number of K is 1. If $1 \le m < n$ and $n \equiv m + 2 \pmod{4}$, then $E_{n-m,K}^{(n)}(Z, s)$ is holomorphic at s = m.

Corollary 2. (1) (SP Case) $\operatorname{Res}_{s=1}^{\binom{(n)}{2}}(Z, s)$

$$= \pi^{-n} \left\{ (-1)^{\frac{n-1}{4}} 2^{-2n-3} (n+1)! (n+1) (n+3) \right\}$$

$$\times \frac{B_2 B_{rac{n-1}{2}}}{B_{rac{n+3}{2}} B_{n+1} B_{n-1}} E_{rac{n-1}{2}}^{(n)}(Z, 0) \Big\}.$$

(2) (SU Case)

Res $E_{n-1,K}^{(n)}(Z, s) = \pi^{-n}$

$$\times \left\{ -\frac{2^{1-2n} \left| d_{K} \right|^{\frac{n-1}{2}}}{w_{K}} \frac{(n+1)! \, n}{B_{n+1} B_{n,\chi_{K}}} E_{n-1,K}^{(n)}(Z, 0) \right\}.$$

Here B_n and $B_{n,\chi}$ are the n-th Bernoulli number and the generalized Bernoulli number respectively, and w_K the order of the unit group of K.

Remark 2. We take the definition of B_n , $B_{n,x}$ from [2], p. 89, p.94 respectively.

Remark 3. In the special case K = Q(i), n = 5, the residue formula in (2) of Corollary 2 was already given in [4]. The Eisenstein series treated there is $\tilde{E}_{k,K}^{(n)}(Z, s) := \det \Im(Z)^{-\frac{s}{2}} E_{k,K}^{(n)}(Z, \frac{s}{2})$ in our notation. The residue formura in [4] was

4] was
$$\operatorname{Res}_{s=2} \tilde{E}_{4,K}^{(5)}(Z, s) = \frac{\pi^6 |d_K|^{-\frac{5}{2}} \det \Im(Z)^{-1}}{\Gamma(5) \zeta(6) L(5; \chi_K)} \theta^{(5)}(Z; I)$$

where $\theta^{(5)}(Z;I) = \sum_X \exp[\pi i \text{tr}(\bar{X}^T I X Z)]$ is the theta series associated with lyanaga's matrix I (for the precise definition, see [4], p. 117). Since $\theta^{(5)}(Z;I) = 2^{-1} \bar{E}_{4,K}^{(5)}(Z,0) = 2^{-1} E_{4,K}^{(5)}(Z,0)$, we have

nave
Res
$$E_{4,K}^{(5)}(Z, s) = 2^{-1} \det \Im(Z) \operatorname{Res} \tilde{E}_{4,K}^{(5)}(Z, s)$$

$$= 2^{-1} \frac{(2!)^2}{4!} \frac{\xi(1; \chi_K)}{\xi(6) \xi(5; \chi_K)} E_{4,K}^{(5)}(Z, 0)$$

This shows (2) in Corollary 2 in the special case. Finally, we note that there is a minor mistake in [4]. In the final formula (3) in [4](p. 117), the factor $|d_K|^{\frac{5}{2}}$ should be $|d_K|^{-\frac{5}{2}}$.

References

- [1] T. Arakawa: Dirichlet series corresponding to Siegel's modular forms of degree n with level N. Tohoku Math. J., 42, 261-286 (1990).
- [2] T. Miyake: Modular Forms. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong (1989).
- [3] S. Mizumoto: Eisenstein series for Siegel modular groups. Math. Ann., **297**, 581-625 (1993).
- [4] S. Nagaoka: On Hermitian Eisenstein series. Proc. Japan Acad., **70A**, 115–117 (1994).
- [5] G. Shimura: On Eisenstein series. Duke Math. J., 50, 417-476 (1983).
- [6] R. Weissauer: Stabile Modulformen und Eisensteinreihen. Lect. Notes in Math., vol. 1219, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo (1986).