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Commutant Algebra of Superderivations on a Grassmann Algebra

By Kyo NISHIYAMA *) and Haiquan WANG* *)

(Communicated by Kiyosi IT0, M. J. A., Jan. 12, 1996)

Introduction. In his classical book [4], Weyl
gave the constructions of the representations of
the general linear groups by using Young’s sym-
metrizers. Undoubtedly his theory is very impor-
tant in the representation theory and many suc-
cessors have worked in the generalization of this
theory. We also try to get a similar construction
for natural representations of Cartan-type Lie
algabras and Cartan-type Lie superalgabras. As
the first step in this direction, it seems necessary
to calculate the commutant algebra of this repre-
sentation. For the case of Cartan-type Lie algeb-
ra of vector fields, the first author successfully
found the commutant algebra for the case rn <_ n
(see [2]), where rn is the power of tensor product
and n is the rank of the Lie algebra. In this arti-
cle, we want to look for the cornmutant algebra of
the natural representation of Catan-type Lie su-

peralgebra W(n) consisting of all the superderiva-
tions on the Grassmann algebra of n-variables
(see below for the definition). For the case m <_ n
(here also m is the power of tensor product), us-
ing the same method as in [2], we obtain the re-
sult (see Section 2). For the case m > n, it seems
more complicated, but for n 1 and arbitrary m,
we get the similar result as in the case m <_ n;
furthermore, in this case we also get the bicom-
mutant algebra (see Section 3). For the general
case, we conjecture that the result is the same as
in the case m N n. As an evidence, in Section 4,
we give an example for the case n 2, m 3.

1. Lie superalgebra W (n) and its natural
representation. Let A(n) be a Grassmann algeb-
ra over C in n variables e1, .,"’, n and Ak be

*) Dedicated to Professor Takeshi Hirai on his

60th anniversary.
*) Division of Mathematics, Faculty of Integrated

Human Studies, Kyoto University. Partly supported by
Grant-in-Aid for Scientific Research, Ministry of Educa-
tion, Science, Sports and Culture, Japan, No. 07740019.

* *) Department of Mathematics, Faculty of Scien-
ce, Kyoto University.

the space of k-homogeneous elements of A(n).
Put A(n) := Y]k:evenA and A(n) := :oA,
then A(n) has a natural Z.-grading and so we
consider A(n)as a superalgebra. Let W(n)be
the set of all the superderivations over A(n),
then it becomes naturally a Lie superalgebra.
According to the results in [1], every superde-
rivation D W(n) can be written in the form D

P with P A(n) (1 _< <- n), where
i--1

c3 is a superderivation of degree 1 defined by

Oe cu. By definition, the Lie superalg.ebra

W(n) acts on Grassman algebra A(n) as follows:
for any homogeneous D W(n) and V A
A

D(:,, A A ,)= (--1)
S--1, A A D() A A :,.

We call it a natural representation of W(n), and
denote it by .

Let us consider m-fold tensor product
(R)A(n). Then we have a natural isomorphism
as W(n)-modules
@A(n) -A[ull N i<_n, 1 NjN m] =:

A (n, m),
where A[ul 1 <- <- n, 1 <-j <- m] is a Grass-
mann algebra generated by u (1 <-- N n, 1 N j
N m). In the following, we identify @mA(n) with
A(n, m). By means of a tensor product, W(n) is
imbedded into End(@A(n)) EndA(n, m).
More precisely, an element

D P(,"’, ) - W(n)
i=l

corresponds to an element

i---1 =1

DerA (n, m)
via m-fold tensor product gb*m of .

Let (m denote the commutant algebra of

.m(W(n)) in End (A (n, m)
cg
m {E End((R)mA(n)) [E, D] O,
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D b(R)m(W(n))}.
Then cm has a natural Z2-graded structure,
cm Cm, Cm,2. However, Cm,2 vanishes as we
see in the following lemma.

Lemma !.1. The odd subspace m,T of m
vanishes: m,T {0}.

By this lemma, we have cm Cm, hence the
commutant algebra cm becomes

cg
m {E End(@mA (n)) ED DE,

V D *m(W(n))}.
Denote by [m] the set {1,2,’’’, m) of inte-

gers, and put End[m] {p: Ira] [m]} the set
of all the maps from [m] to itself. By composition
of maps, End[m] becomes a semigroup with unit,
whose group elements form a permutation group

m of degree m. We call it a permutation semi-
group. Denote the semig’roup ring of End[m] by
(m. An element p End[m] acts on A(n, m) as
(PP) (i,j) P(i,(j)) (P A(n, m)) and we ex-
tend it to (m by linearity (see [2]), thus, we have
a representation of (m on A(n, m). Denote the
image algebra of this representation by $m c
EndA(n, m). The following lemma is easy to
prove.

Lemma 1.2. For arbitrary n and m, we have

8m -- m"2. Commutant algebra of (R)m(W(n)) (the
case m _< n). Let (, A(n)) be the natural rep-
resentation of W(n) and ((R), A(n, m)) its m-
fold tensor product. Denote by U(W(n)) the uni-
versal enveloping algebra of W(n), then we have

Lemma 2.1. Put (c) (,"’, na). Then
the subalgebra

(R) ( U( W(n) ) in EndA (n, m) is
generated by

P((a1) P((a))
lal,...,ottm

where 1 <-- k and 1 <-- bl," ", bk <- n are indices,

P is a Grassmannian polynomial in n-variables,

and P((a)) P(la,"" ",

Lemma 2.2. If m <- n, then the representation

Ofm on A (n, m) s faithful, hence we have
dim $m dim(m m

Note that the condition m _< n is necessary.
In fact, in Sections 3 and 4, we will give exam-
ples where the representation of (m on A(n, m)
is not faithful.

Using Lemmas 2.1 and 2.2, we can prove
the following

Theorem 2.3. If m <_ n, then the commutant
algebra ? of

(R)m ( W(n) coincides with the repre-
sentation image $m of the semigroup ring m of the
permutation semigroup End[m]:

Proof. Take an E , gin. For Grassmannian
polynomials PI,"’, Pm in n-variables, put
X(P1, P2,’", Pro) Pl((a))

lal,...,am

P((a)) 81 8’
which is in (U(W(n))) by Lemma 2.1. Then
we have

E(PI((1))P((2)) P((m)))
EX(P, P,..., P)( )
X(P1, P,"’, P)E(11 A A A ).

Since A(n, m) is generated by (P((1))
P((m)) P A(m)}, E is completely deter-
mined by E(I e """ A mm). On the
other hand, Euler operators

are contained in
m(W(n)), and

( .1) [0 ifm <iN .
This means that if 1 N j N m, then E( A
A ) is the eigenvector of the Euler operator
with eigenvalue 1 and if m + 1 N j N , then
E( A A ) is in the kernel of the Euler
operator. So E( A A ) is of degree 1
in (,’" ", m) if 1 N j N m, and degree 0 in

(,’" ", m) if m + 1 N j N . Hence we obtain

E(, A mm) N a...m
jl,. ..,jmm

(1 m).
So dim m is less than or equal to mm.

On the other hand, by Lemma 1.2, m con-

tains the subalgebra m and by Lemma 2.2, its
dimension is equal to m

m
if m n. Therefore we

conclude the theorem. Q.E.D.
By the above theorem, we know the struc-

ture of the commutant algebra very well for the
case m n. For the general case, we cannot get
a similar result until now. But for the special
case n= 1 and n 2, m 3, we obtain the
same result as above; furthermore for the case



10 K. NISHIYAMA and H. WANG [Vol. 72(A),

n 1, we get the bicommutant algebra.
3. Sehur duality for W(1) End[m]. In

this section, we consider the case n 1. In this
case, we get a result which is independent of m.
For n 1, there holds

W(1)
8

deg 1

For convenience, we use the isomorphism
A(1, m) "= ,"’, ) A(m). So we have

"=
.=

Obviously, D_(A) A,_, Do(A) A, for any
k.

Lemma 3.1 The operator D_ is an exact de-
rivation, i.e., (D_) 0 and the chain complex

D_ D_ D_ D_; D_;
OAA_ AAAo 0

is exact.
By the above lemma, we can prove the fol-

lowing theorem.
Theorem 3.2. Let n 1 and the notations be

as above. Then the commutant algebra of
(W(1)) coincides with the representation image 8
of semigroup ring of the permutation semigroup
End[m]

8, .
Proofi By Lemma 1.2, we have $m m, so

it is enough to prove m $m. To do so, we in-
troduce some notations. For any E m, put

and D_,, "= D_ ,. Clearly,, ,_- (0)
and

(as a vector space).
Since A, is decomposed as

A, (D_,,+) @ (A,_ A ,),
we get an isomorphism of vector spaces by using
Lemma 3.1"

Homc(A_ A , A) @
Homc(A,_ A ,, A_) @ @ Homc(, A).

On the other hand, we can construct a basis
of Homc(A_ A , A), using elements from
$m. So we get a surjection

8 @ Home(A,_ A , A,) V

and dim cm dim $m. By Lemma 1.2, we have
$m com. Q.E.D.

From the proof of the above theorem, we can
easily know that the dimension of $m is

m- 1
so the representation of I, on A(m)

is not faithful as indicated in Section 2.
In the special case where 1, we also get

the bicommutant algebra of ’(W(1)). The
next Theorem :3.:3 states that it is the image of
the enveloping algebra (R)m(U(W(1))). There-
fore, in this case, we get an analogue of Schur
duality for W(1) x End[].

Theorem 3.3. The bicommutant algebra of
m-fold tensor product (R) of the natural repre-
sentation of W(1) is equal to the image
U(W(1) of the enveloping algebra.

The proof of this theorem is straight for-
ward, comparing dimensions of

(R)m (U(W(1)))
and the bicommutant algebra com. See [3] for the
detailed proof.

4. Toward the general ease. For the gener-
al case, we suspect that the commutant algebra

cm of the representation (R)m of W(n) is equal
to $m. As an evidence, we give an example for
the case n--2, m--3. In this case, since the
rank and the dimensions are small, we can calcu-
late out the commutant algebra c explicitly. Let
W(2) be a Caftan-type Lie superalgebra of rank
2 as above. We consider 3-fold tensor product
A(2,3) - )3A(2) of the natural representation,
where A(2,3) is a Grassmann algebra generated
by {1t, z[i,j: 1,2,3}. By the definition of
(R)3, we have

(W(2)) (D, D, DI i, j 1,2)/c,
where

D
(x=l a--1

Put A, := A(li 1 < i < 3) @ A,( 1 < j
-< 3), where A( 1 < < 3) (resp.
-< j 3)) is a homogeneous subspace of all the
Grassmannian polynomials of degree p (resp. q)
generated by (11 1 --< 3} (resp. (zjl 1 <-- j

3}), then )SA(2)= ),=oA,. Note that for
any E s, we have E(A,) A, and in the
algebra (R)3(W(2))we have the following rela-
tions:

D 0, DlZz 0 (i 1,2),
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(DID122 -4- D122D1) [D1, D122] D22,
(DDii + DiviDe) [D2, D121] D.

Using above relations, we can show that any
E 73 is completely determined by E IA,2 and
E la,,, and we obtain dim 73 < 24 after some cal-
culations. On the other hand, also by direct cal-
culation, we have dim$3 > 24. By the above
facts, we have the following theorem.

Theorem 4.1. Let n= 2 and m= 3. Then
the commutant algebra 3 of

(R) (W(2)) coincides
with the representation image 83 of semigroup ring

3 of the permutation semigroup End[3]" ? 8.
The dimension of 73 is equal to 24.
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