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1. Introduction and result. Let (t, q)
R R3- C2

satisfy
0 0Iz t -i t, q) H (t, q) H ic a Oq(1) 1

[(0, q) (q).
Here (t, q) --t(l(t, q), 2(t, q)), the summa-
tion w.r.t, j 1, 2, 3 is abbreviated and the
Pauli matrices {at} are, for example represented
by

e- 1 0 e- 0 ,ea- 0 -1
Applying formally the Fourier transforma-

tion w.r.t, q R to (1), we get

h - (t, p) He(t, p) where

( p p--ipH- cap= c p + ip -p /"
A c P & IL. stands for 2 X 2-identity
matrix), we easily have

Proposition 1. For any t R,

(t, q) (2rr )-a" dpe’-e-’-(p)

f dq’(t, q, q’)(q’)

with

E(t, q, q’) (2r )-a( dpe--,
[cos(c-tlpl)I ic-]pl-lsin(c-ltlpl)[.
It seems difficult to imagene from this for-

mula that there exist hidden classical objects for
(1).

In spite of this, we claim that there exists
the classical mechanics corresponding to the
Weyl equation and that a fundamental solution of
(1) is constructed as a Fourier integral operator
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using phase and amplitude functions defined by
that classical mechanics. Therefore, the Weyl
equation is obtained by quantizing that classical
mechanics after Feynman’s procedure. Because
that .Hamiltonian is "of first order both in even

and odd variables", we should modify Feynman’s
argument from Lagrangian to Hamiltonian formu-
lated "path integral".

Main Theorem [Hamilton Path-integral repre-

sentation].

(t, q) b((2rr)-a/2/ ( ddrrt2(t, 2, , , r)
312

Here, (t, , O, , 7r) and t(t, , O, , 7r) are

solutions of Hamilton-Jacobi and continuity equa-
tions, respectively.

Remark. We use rather freely the know-
ledge from superanalysis( analysis on super-
space Rmln). Roughly speaking, we introduce
even and odd variables xj and 0k as something-

like even and odd forms on "R: II= R re-

spectively. After introducing the Frchet-
Grassmann structure on ARN fit, we may de-
velop elementary and real analysis on

ffoa (AevR) (AoaR) as similar as

Rm"those on In the above, denotes the Fourier
transformation for functions on superspace
and q x the body part of x R1. See,
more precisely, [2] or [6].

Detailed proofs will be appeared somewhere
[4].

2. Outline of our procedure. (A) We iden-

tify a "spinor" d,)(t, q) --t(l(t, q), (t, q))" R
R-- C with an even supersmooth function

u(t, x, O) Uo(t, x) + u(t, x)010 "R 312_.._)
(ev’ We denote that identification by

# L2(R C2) s--* and
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D" 2ss(!}t12) ---* L (R" C2).
Here, is the superspace, no(t, x), ul(t, x)
are the Grassmann continuation of 1(t, q), 2(t,
q), respectively, and
() {u(x, ) no(X) + u(x)

no(q), u (q) e L (R )
where x q.

(B) We represent the matrices {a} which act
on u(t, x, ) as follows:

O, 00

=1-

Example.

U Uo I 0
(C) Therefore, we may correspond the dif-

ferential operator given by
82

82
(2) +c(0,02+ 002) 0

Ox
ic 1- 0 00 0 Oxa’

which yields the suersace version of the Weyl
equation

N .(t. z. O)

i , O, .(t,x, O),

u(O, x, 0) u(x, 0).
Moreover, the "complete Weyl symbol" of (2) is
given by

(,
(4) c(

-ic -(OTr + Orc).
(D) We consider the classical mechanics cor-

responding to (e, 0, 7r) given by
d o3(, O,
2/x 0

(5)

d

--" 7t"m

Prolmsition 2.

0Z(, 0, =)

There exists a unique global

solution (x(t), (t), O(t, 7r(t)) of (5) with any ini-

tial data (x(O), (0), 0(0), 7r(O)) (x, , O,
7) 6,a_ 3..31.. Moreover, for any fixed (t,
7), the map defined by

(x, o) (x o)
2, x(t, x, , O, zr), 0 O(t, x, , O,

gives a supersmooth diffeomorphism from
12. Therefore, there exists the inverse map given

by
(x, O) (x, o)

x y(t, 2, , O, 7r), 0 w(t, 2,, , O,
which satisfies
2 x(t, y(t, 2,, , O, 7r), , w(t, 2, , O,
0- O(t, y(t, 2, , O, 7r), , w(t, 2, , O,
x- y(t, x(t, x, , O, v), , O(t, x, , O, 7D,
0 w(t, x(t, x, , O, re), , O(t, x, , O, ), r).

We put

.o(t, x, . o. rr
+ <0(s) r(s)> --(x(s), (s), O(s), 7r(s))}ds,
and

(t, x, , O, r) <xl> +
+ S3o(t, x, , 0, r)

Proposition 3. (t, 2, , O, ) is given by
(t, 2, , 0, ) <X[ >
+ [J cos( -tl J isin(c-t[ l)] -x [ [ <01 ) sin (c -t[ I) ( + i) 00

-sin (c -t[ I) ( i)].
Moreover, it satisfies the following Hamilton-Jacobi
equation"

(t, 2,,O,)+,O,-- =0,

(o, x, , 0, ) <xl > + <01
Now, we put

(t, 2, _, O, _) sdet

(sdet super determinant).
Then, we get

Proposition 4. (t, 2, , , ) ]]-[]]
cos(c-t] ]) i sin(c-t] ])].
It satisfies the following continuity equation"

+ =o,

(o, 2,,0,)=1.
In the above, the argument of is (t, , , O, ),
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and ---3 \(those of are , , -=), respective-
ty.

From here, we change the order of variables
’, , 0, *312 614 to , 0, , 32

312 (this change corresponds to the process
from classical to quantum).

We define an operator

((t)u) (, ) (2)-/ dd
3[2

The function (t,,) ((t))(,wil be
shown as a desired solution for (3).

(E) On the other hand, using Fourier trans-
formation, we have readily that

where is a (Weyl type) pseudo-differential
operator with symbol (, O, ), that is,

(

2 (’ )"

herem g. (1) For t , (0 is well

fined nitary operator in SS

(2)(0 R t (t) B( sss(al) is continuous.

(ii) For ss,o(al), we t (t , 0)-
( (t) ) (, 0). Then. it satisfies

0
.(t, , Ol .(t, , 0,

(0, , 0) .(, 0).
(F) Remarking b # and putting

U (t) b//(t) # , we have
Theorem 6. (1) For, t R, U (t) is well de-

fined unitary operator in L (R: C).
(2) (i) R t- U(t) B(L2(R3:C2),

L2(R C)) is continuous.

(ii) For L2(R3:C), we put (t, q)
(U (t) gb) (q). Then, it satisfies

ih - (t, q) He(t, q),

(o, q) (q).
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