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Fundamental Solution of Anisotropic Elasticity

By Gen NAKAMURA *) and Kazumi TANUMA* *)

(Communicated by Kiyosi ITS), M. J. A., Feb. 13, 1996)

Abstract: A formula for the fundamental solution of three-dimensional anisotropic elas-
ticity is given in terms of the eigenvectors and/or the generalized eigenvectors of the associ-
ated six-dimensional eigenvalue problem called Stroh’s eigenvalue problem. From this formula
an explicit closed form of the fundamental solution for transversely isotropic media is

obtained.

1. Introduction. The aim of the present the perturbation argument for the fundamental
paper is to give an explicit formula of the fun- solution (cf. Malen and Lothe [6], Nishioka and
damental solution of three-dimensional anisotro- Lothe [9,10]) and the estimation of the displace-
pic elasticity. Let C (Cijkl) lKi,j,k,l be a ment field and the stress field around a straight
three-dimensional homogeneous linear anisotro- dislocation (cf. Mal6n [4,5]). However, the
pic elastic tensor which satisfies the following assumption of distinctness of the eigenvalues is

symmetry and strong convexity conditions;
(A-l) Cikl- Ckl, (1 <_ i, j, k, <_ 3)

i,j,k,l=l i,j=l

for a real matrix 8

too strict to hold for most crystals, since they
have some symmetries.

In this paper we give a formula for G in

terms of the eigenvectors and/or the generalized
eigenvectors of Stroh’s eigenvalue problem, which

Let x R and let G, Gm(x) be a solution is slightly different from that of [51, without
to assuming distinctness of the eigenvalues. As a

_,s Cj
0

G + c,c(x) 0 in R byproduct we give an explicit closed form of G
j,k,=l OXj OX k, for transversely isotropic media, because the ex-

(1 _< i, m <_ 3) plicit formulae of the eigenvectors and/or the
where (xl, x2, xs), c;,n and c(x) are the carte- generalized eigenvectors for the associated eigen-
sian coordinates of x, the Kronecker delta symbol value problem are available in the case of trans-
and the Dirac delta function, respectively. G--- versely isotropic media. The explicit closed form
G(x) (Gk ’’;m--,2,s) is called the fundamental of the fundamental solution will be useful for
solution to the system of the equations of anisot- computing the displacement and the stress fields
ropic elastostatics. Physically, the solution Gk, in the elastic medium by the boundary element
describes the displacement at the point x in the method, which is an effective method in numeric-

x direction due to a point force at the origin in al analysis derived from the integral equation
the x, direction, methods for boundary value problems.

Bernett [1] gave a formula for G in terms of 2. Result. Let x 4= 0. Write
an integral on the interval [0,27r] whose integ- x
rand was a smooth periodic function with a -- (sin (p cos if, sin (p sin0, cos (p)

period 27r. Mal6n [5] gave another formula prior in terms of the polar coordinates (r, (p, @)(r_>
to [1]. That is he shows that G can be expressed 0, 0 <-- p <-- n’, 0 <-- 0 < 2r). Let

0
in terms of the eigenvectors of Stroh’s eigenvalue v (sin 0, cos 0, 0),

0
problem provided that all the eigenvalues are dis- w (cos p cos , cos (p sin0, sin (p).
tinct. Malen’s formula is useful for Define Q Q(p, 0), R- R(q), 0), T= T(q), 0)
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(v, w) C,kVW
j,l=l

for v (vl, v2, va), w (wl, w2, wa). Moreover
define N-- N(p, 0) by

N= [ --T-1Rr T-1 ]Q + RT-1R r RT-1

and consider Stroh’s eigenvalue problem"

N p.
According to (A-2) its eigenvalues p(1 <--c
<--6) are not real and we renumerate p in the
following way:

p,+=p, Imp >0 (1 <_ a<_3).

Let e l
be the eigenvector or the genera-

lized eigenvector associated with the eigenvalue
p where a, l C

Theorem 2.1 (Main Theorem). Let (x) be
1 _)

_
G(x) 4 x (Im{LA

where A [al, a2, a3], L [l, 12, /3] and Im{.}
denotes the imaginary part of a matrix {’}, then
G(x) is the fundamental solution.

3. Proof of Theorem 2.1. To start with, we
quote a result of [1], which is obtained by the
Fourier transformation.

Theorem 3.1. Let G(x) be
1 2 o( -G(x)=

=2
<V()’v ) > de x0,

8 Ixl
o vo o

where () cos + sin w, then G(x) is
the fundamental solution.

Now following Chadwick and Smith [2], we
define the Stroh tensors S, $2, $3 as follows. De-
fine v, w by

ov= cosv+sinw,
w= sinv+cosw.

Moreover let
Q() <v, v>, R() <v, w>,
r() <w, w>

and define Nl(), N2(), N() by
N() T-()RT(), N2() T-(),
N() R() T-()R () Q().

Then we define SCQ" 1, 2, 3) by

S (,
and we observe that

and S is invertible.
Theorem 2.1 follows from the following key lem-

ma.
Lemma 3.1.

(3.2) S i, (1 <_ c <_ 3)
where

$3 Sr

Proof of Theorem 2.1. From (3.2) it follows
that Sa + Sela i a. Then (S i/)A
S.L, where I is the 3 x 3 unit matrix, and LA-iSl- SIS1. Combining with (3.1) and
Theorem 3.1 we obtain Theorem 2.1.

The rest of this section is devoted to the
proof of Lemma 3.1. According to the degeneracy
of Stroh’s eigenvalue problem, we have to consid-
er the following 6 cases.
Case 1 :p(1 <- c < 3) are distinct,
Case 2 :p= P3, P =/= P2, dim Ker(N- p/) 2,
Case 3 :p p. P3, dim Ker(N- p/) 3,
Case 4 :p= P3, P :/: P, dim Ker(N- pJ) 1,
Case 5 :p= p P3, dim Ker(N- p/) 2,

dim Ker(N p/) 3,
Case 6 :p= p. P3, dim Ker(N- p/) 1,

dim Ker(N p/) 2,
dim Ker(N- p/)3 3.

Here for an n x n matrix M, KerM {u cn;
Mu 0}.

For (3.2) partial results can be seen in [2],
Lothe and Barnett [3] and Nakamura [7]. Howev-
er, we have not seen any complete proof of (3.2)
dealing with all the 6 cases. In [8] we give a

mathematically rigorous and consistent proof of
(3.2) which can be applied to all the 6 cases. In
this article we show the outline of this proof.

The following basic lemma is necessary for
the proof.

Lemma 3.2 ([2]). N() [NI() N.(O) ]N() Nr()
satisfies
(3.3) N’() I-- N()
where N’()= dN()/d and I is the 6 6
unit matrix.

Associated with the above cases, we state
several lemmas.

Lemma 3.3 ([2], [3], [7]). Let p()be the
solution to the Cauchy problem for the Riccati equa-
tion:

(3.4) p’() 1--p2(), p(0) =p
with Im pO > O. Define K() and m() by

K() 2 p(’) de’
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and

re(C) exp[-- K(’)] de’
respectively. Then we have

(3.5) p() de- 27ri,

(3.6) exp[-- K()] d 0

and
2

(3.7) exp[-- K()]m() de-- 0.

Lemma 3.4. Let be an eigenvector of
N(O) associated with an eigenvalue po

satisfying
Imp> O. Let p() be the unique solution to the
Cauchy problem (3.4). Then

[N() p()/] 0.

Proof Put h() IN(C) p()/]. From
(3.3) and (3.4), h’() [N() -+-p()/]h().
Hence h(0)--[N(0)--p/’]-0 and the u-
niqueness of the solution to the Cauchy problem
implies h() 0.

From (3.5) and Lemma 3.4, (3.2) holds for
each eigenvector associated with one of the eigen-
values of Case 1- Case 6. Note that in Cases
1,2,3, there are no generalized eigenvectors.

As in the proof of Lemma 3.4, by the u-
niqueness of the solution to the Cauchy problem
we have the next lemma.

Lemma 3.5 ([2], [3]). Let pO
be an eigenvalue

of N(O) satisfying Im pO > O. Let 1, 2 be vectors

of the Jordan chain of height 2 associated with pO.
That is,

[N(0) p0/] 0, [N(0) p0/] .
Define 2() as the unique solution to the Cauchy
problem"
(3.8) () 2p()(), (0)
where p()is the unique solution to the Cauchy
problem (3.4). Then

[N() p()/]() .
Solving (3.8) and combining with (3.5), (3.6)

and Lemma 3.5 we observe that (3.2) holds for
each generalized eigenvector e when {1, e} is
the Jordan chain of height 2 for Case 4 and Case
5. Note that a Jordan chain of height 2 exists
only for Case 4 and Case 5. Also as in the proof
of Lemma 3.4, by the uniqueness of the solution
to the Cauchy problem we have

Lemma 3.6 ([7]). Let pO be an eigenvalue of
N(0) satisfying Impo > O. Let , , 3 be vectors

of the Jordan chain of height 3 associated with pO.
That is,

[N(0) pO/] 0, [N(0) pO/] . ,
[N(0) pO/]3 2.

Moreover let p() be the unique solution to the
Caychy problem (3.4). Define () and ()as
the unique solutions to the Cauchy problem:
(3.9) () 2p()2() , 2(0)
and
(3.10) () 4p()(), (0) z
respectively. Then we have

[N() p()/]() 1
and

[N() P()/]3() ().
Solving (3.9), (3.10), and combining with

(3.5), (3.6), (3.7) and Lemma 3.6 we observe that
(3.2) holds for each generalized eigenvectors ,
3 if {1, , 3} is the Jordan chain of height 3
for Case 6.

Therefore we have proved Lemma 3.1 for
any possible eigenvectors and generalized eigen-

vectors in the Jordan chain arising in Case 1
Case 6.

As a final remark, we point out that the
above arguments show that the structure of the

Jordan chains remains invariant while changes.
4. Fundamental solution for transversely

isotropic media. Since the surface impedance ten-

sor --iLA- can be computed explicitly for
thee-dimensional transversely isotropic media,
we give the explicit closed formula for the fun-
damental solution by using Theorem 2.1. Assume
(A-l), (A-2) and Cijkt- Cjik. Let the x3-axis be
the axis of rotational symmetry. Then non-zero
components of the elastic tensor are characte-
rized by the five independent constants:

A Cxlx C..., C C3,
F Cxx C, L C1 C,
N- Cx, C121- (A-N)/2.

Let x=/= 0 and x/Ixl (sinpcos0, sin
sin 0, cos p), (0 g p <-- 7r, 0 _< 0 < 27r). Define

K, G, H, D, A, D’ by

[ 2L ]1/2K COS2( + A- N sin2q

[[2AL cos(p + (AC- F- 2FL) sin(.p + 2/-1l/,jG

D- (A COS2(/0 -- L sin2p + AH)K- AG cos q,
A AL cos4p + (AC F 2FL) cos2q sin2q
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+ CL sin4c,
D"= {AGHKL- (AC- F2- 2FL)cos2p

sinks0} (cosc# + H) AL coseC(cos
+ H) + L sin(GHKL- C cos p
sin9).

Then we have
1

1,2,3o) O)
where

[sin0 cos0 {ASn GK + D" L(GHK- cos Hcos2)

UIC (F + L) 2) }] D
cos qsinp

AL mn 9

Sz GK +---; AL(GHK- cos p Hcos2p)

(AC (F + L) 2) }] Dcos 0sin0
cos (psin29

AL sin2p
(F+ L)D

Sa AD cos q sin o cos O,

GK +

(AC (F+L) 2) }] D
cos psxn o

AL sinp
(F + L)D

Sz AD’ cos sin p sin 0,

D
$33 AD’ (A cosZp + L sin299 + AH).

In the case of sin9 0, Sj(1 _< i,j<- 3) are
obtained by taking the limit sin q0 in the
above formula. Details of the computations of the
surface impedance tensor for transversely isotro-
pic media are seen in Tanuma [11].
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