## Triangles and Elliptic Curves. VII

By Takashi ONO

Department of Mathematics, The Johns Hopkins University, U. S. A. (Communicated by Shokichi IYANAGA, M. J. A., Feb. 13, 1996)

This is a continuation of series of papers [2] each of which will be referred to as (I), (II), (III), (IV), (V), (VI) in this paper. In (VI) we considered exclusively real triangles t = (a, b, c) and showed that there is a 1-1 correspondence between the classes of similarity of t's and the isomorphism classes of triples  $E_t$ 's of elliptic curves. In this paper, we pursue the same theme for those objects rational over any subfield k of R. This time, we shall introduce a third object (a quartic surface over Q) in addition to triangles and elliptic curves to clarify the matter.

§1. Tr and  $S_+$ . As in (VI), we begin with the set

(1.1)  $Tr = \{t = (a, b, c) \in \mathbf{R}^3; 0 < a < b + c, 0 < b < c + a, 0 < c < a + b\}.$ 

For  $t, t' \in Tr$ , we write  $t \sim t'$  if they are similar, i.e., if t = rt' for some  $r \in \mathbf{R}$ . For any subfield  $k \subset \mathbf{R}$ , put

 $(1.2) Tr(k) = Tr \cap k^3.$ 

If  $t \sim t'$ ,  $t, t' \in Tr(k)$ , note that t = rt' with  $r \in k$ . So we can speak of the embedding  $\widetilde{Tr}(k) \subset \widetilde{Tr}$  of quotients in the obvious way.

Next, we consider the set

(1.3) 
$$S_{+} = \{P = (x, y, z) \in \mathbf{R}^{3}; x, y, z > 0, (xy)^{\frac{1}{2}} + (yz)^{\frac{1}{2}} + (zx)^{\frac{1}{2}} = 1\},$$

where (and hereafter) we assume that  $a^{\frac{1}{2}} > 0$ when a > 0. On rationalizing the defining relation in (1.3), we have

(1.4)  $S_{+} = \{P \in \mathbb{R}^{3}_{+}; 1 > xy + yz + zx, (1 - xy - yz - zx)^{2} - 4(x + y + z)xyz - 8xyz = 0\},\$ where (and hereafter) we put, for  $k \subset R, k_{+} =$ 

 $\{a \in k ; a > 0\}.$ For  $k \subset \mathbf{R}$ , we put

(1.5)  $S_+(k) = S_+ \cap k^3$ .

Let A, B, C be angles of t = (a, b, c) so that A is between sides b and c; similarly for B, C. Call  $\theta$  a map:  $Tr \rightarrow \mathbf{R}^3_+$  given by

(1.6)  $\theta(t) = (\tan^2(A/2), \tan^2(B/2), \tan^2(C/2)).$ Since  $\theta$  is defined by angles only, it induces a map  $\tilde{\theta}: \widetilde{Tr} \to \mathbf{R}^3_+$ .

(1.8) **Theorem.** For any subfield  $k \subseteq \mathbf{R}$ , the map

 $ilde{ heta}$  induces a bijection :

$$Tr(k) \cong S_+(k).$$

*Proof.* By abuse of notation, put

(1.9)  $f(\alpha) = \tan \alpha, \ \alpha \in I = (0, \pi/2).$ 

Note that f is a monotone increasing function with range  $(0, +\infty)$  which satisfies the functional equation

(1.10)  $f(\alpha) f(\pi/2 - \alpha) = 1, \alpha \in I$ , and the (stronger form of) addition formula (1.11)  $f(\alpha) f(\beta) + f(\beta) f(\gamma) + f(\gamma) f(\alpha) = 1$ 

$$\Leftrightarrow \alpha + \beta + \gamma = \pi/2.$$

Now let  $t = (a, b, c) \in Tr$  and A, B, C be angles of t as above. Putting  $\alpha = A/2$ ,  $\beta = B/2$ ,  $\gamma = C/2$  in (1.9), (1.11), we find that the point  $\theta(t) = (f(\alpha)^2, f(\beta)^2, f(\gamma)^2)$  belongs to  $S_+$ .

It is obvious that  $\theta(t) = \theta(t')$  implies  $t \sim t'$ . Hence the map  $\tilde{\theta}: \widetilde{Tr} \to S_+$  is injective. Next, for a subfield  $k \subset \mathbf{R}$ , let  $t = (a, b, c) \in Tr(k)$ . Then  $\cos A = (b^2 + c^2 - a^2)/2bc$  belongs to k and so does  $f(\alpha)^2 = (1 - \cos A)/(1 + \cos A)$ ; similarly for  $f(\beta)^2$ ,  $f(\gamma)^2$ . Hence  $\tilde{\theta}$  induces an injection  $\widetilde{Tr}(k) \to S_+(k)$ . Finally, it remains to show that this map is surjective. So take any point  $P = (x, y, z) \in S_{+}(k)$ . By (1.11), we can find angles A, B, C, 0 < A, B,  $C < \pi$  so that A  $+B+C=\pi$  and that  $x=f(\alpha)^2$ ,  $y=f(\beta)^2$ ,  $z = f(\gamma)^2$ , where  $\alpha = A/2$ , etc. Choose a triangle  $t = (a, b, c) \in Tr$  with angles A, B, C such that c = 1. (In case t happens to be a right triangle, we may assume without loss of generality that  $C = \pi/2$ , i.e., c = the hypotenuse of t =1.) Note that  $\cos A = (1 - f(\alpha)^2)/(1 + f(\alpha)^2)$  $= (1 - x)/(1 + x) \in k$ ; similarly cos B, cos C  $\in k$ . On the other hand, though  $\sin A =$  $2f(\alpha)/(1+f(\alpha)^2)$  may not belong to k in general, note also that  $\sin^2 A = 4x/(1+x)^2 \in k$ ; similarly for  $\sin^2 B$ ,  $\sin^2 C$ . On squaring each term of the sine formula, we have

(1.11)  $a^2 / \sin^2 A = b^2 / \sin^2 B = 1 / \sin^2 C$ ,

so we see that  $a^2$ ,  $b^2$  belong to k. Since  $\cos A$ ,  $\cos B$  are both non-zero elements of k (by our assumption on the angle C), the cosine formulas

(2.5)

 $a^{2} = b^{2} + 1 - 2b \cos A, \ b^{2} = 1 + a^{2} - 2a \cos B$ imply that  $t = (a, b, c) \in Tr(k)$  with  $\theta(t) = P$ . Q.E.D.

§2. Tr and  $\mathscr{E}$ . In (VI) §3, we associated to each  $t \in Tr$  an ordered triple  $E_t = \{E_a, E_b, E_c\}$  of elliptic curves defined over R:

$$E_{a}: Y^{2} = x^{3} + P_{a}x^{2} + QX,$$

$$P_{a} = \frac{1}{2}(b^{2} + c^{2} - a^{2}),$$
(2.1) 
$$E_{b}: Y^{2} = x^{3} + P_{b}x^{2} + QX,$$

$$P_{b} = \frac{1}{2}(c^{2} + a^{2} - b^{2}),$$

$$E_{c}: Y^{2} = x^{3} + P_{c}x^{2} + QX,$$

$$P_{c} = \frac{1}{2}(a^{2} + b^{2} - c^{2})$$

with  $Q = -(\text{area of } t)^2 = \frac{1}{16} (a^4 + b^4 + c^4 - 2a^2b^2 - 2b^2c^2 - 2c^2a^2).$ 

Let us denote by & the set of all  $E_t$ ,  $t \in Tr$ , and call  $\psi$  the map  $Tr \rightarrow \&$  given by

(2.2)  $\psi(t) = \boldsymbol{E}_t, \ t \in Tr.$ 

For t = (a, b, c),  $t' = (a', b', c') \in Tr$ , triples  $E_i, E_{i'}$  are said to be *isomorphic over* R (written  $E_t \cong E_{t'}$ ) if  $E_a, E_b, E_c$  are isomorphic over R to  $E_{a'}, E_{b'}, E_{c'}$ , respectively. In this situation, we know that

(2.3)(VI, (3.5))  $t \sim t' \Leftrightarrow \boldsymbol{E}_t \cong \boldsymbol{E}_{t'}, t, t' \in Tr.$ For a subfield  $k \subset \mathbf{R}$ , if  $t = (a, b, c) \in Tr(k)$ then elliptic curves  $E_a$ ,  $E_b$ ,  $E_c$  are all defined over k. Denote by  $\mathscr{E}(k)$  the set of all  $E_t$ ,  $t \in$ Tr(k). The map  $\psi$  induces a map (written  $\psi$ again)  $Tr(k) \rightarrow \mathscr{E}(k)$ . For  $t, t' \in Tr(k)$ , the isomorphism  $E_t \cong E_{t'}$  over k is defined in the obvious way. Assume now that  $t \sim t', t, t' \in$ Tr(k); so t = rt',  $r \in k$ . Since  $P_a$ , Q are forms in Q[a, b, c] of degree 2,4, respectively, we have  $P_a(t) = r^2 P_a(t')$ ,  $Q(t) = r^4 Q(t')$ . Then the map  $(X, Y) \mapsto (r^2 X, r^3 Y)$  induces an isomorphism  $E_a \cong E_{a'}$  over k; similarly for  $E_b$ ,  $E_c$ . Denote by  $\tilde{\mathscr{E}}(k)$  the quotient of  $\mathscr{E}(k)$  defined by isomorphisms over k. Then the map  $\psi$  induces a map  $\tilde{\psi}: \widetilde{Tr}(k) \to \tilde{\mathscr{E}}(k)$  which is surjective by the definition of  $\mathscr{E}(k)$ .

(2.4)**Theorem.** For any subfield  $k \subset \mathbf{R}$ , the map  $\hat{\psi}$  is a bijection:

$$\widetilde{Tr}(k) \cong \widetilde{\mathscr{E}}(k)$$
.

*Proof.* We only have to prove that the map is injective. So assume that  $E_t \cong E_{t'}$  over  $k, t, t' \in Tr(k)$ . Then the isomorphism is, a fortiori, de-

fined over  $\boldsymbol{R}$ , and our assertion follows from (2.3), Q.E.D.

$$\widetilde{Tr}(k) \qquad \stackrel{\theta}{\longrightarrow} \qquad S_+(k)$$

 $\mathcal{I}_{\tilde{o}}$ 

$$\widetilde{\check{\phi}}$$
  $\widetilde{\mathscr{E}}(k)$ 

Now that we have two bijections  $\tilde{\theta}$ ,  $\tilde{\psi}$ , we get the third bijection automatically. However, we prefer to find a bijection  $\tilde{\varphi}: \tilde{\mathscr{E}}(k) \xrightarrow{\sim} S_+(k)$  so that the diagram (2.5) becomes commutative.

§3. & and  $S_+$ . When an elliptic curve of the form

(3.1)  $Y^2 = X^3 + PX^2 + QX$ ,  $P, Q \in \mathbf{R}, Q < 0$ , is considered, the quantity  $\lambda$  is handier than the invariant j. It is defined by

$$(3.2) \qquad \qquad \lambda = N/M < 0$$

where M, N are determined by the condition (3.3)  $Y^2 = X^3 + PX^2 + QX = X(X + M)(X + N),$ M > 0, N < 0.

For a subfield  $k \subset \mathbf{R}$  and  $t = (a, b, c) \in Tr(k)$ , each member  $E_a$ , etc., of the triple  $E_t \in \mathcal{E}(k)$  is certainly of type (3.1) and so we can speak of the quantity

(3.4)  $\lambda_a = \lambda(E_a) = (P_a - bc)/(P_a + bc)$ =  $-(1 - \cos A)/(1 + \cos A) = -\tan^2(A/2)$ , similarly for b, c.

Call  $\varphi$  the map  $\mathscr{E}(k) \to k^3$  given by

(3.5)  $\varphi(\boldsymbol{E}_t) = (-\lambda_a, -\lambda_b, -\lambda_c).$ 

In view of (2.4), (3.4),  $\varphi$  induces a map

(3.6)  $\tilde{\varphi}:\tilde{\mathscr{E}}(k)\to k^3.$ 

Furthermore, by (1.6), we find  $\tilde{\theta} = \tilde{\varphi}\tilde{\psi}$  and hence we have proved

(3.7) **Theorem.** The map  $\tilde{\varphi}$  gives a bijection:  $\tilde{\mathscr{E}}(k) \cong S_+(k)$ .

§4. A special case. For a subfield  $k \subset \mathbf{R}$ , let us define a subset of Tr(k) given by  $(4.1) Tr(k)_H = \{t = (a, b, c) \in Tr(k); \Delta_t \in k\},$ where  $\Delta_t = \Delta$  = the area of t = (s(s - a)(s - b)) $(s - c))^{\frac{1}{2}} = \frac{1}{2} bc \sin A$ . Since  $\tan(A/2) = \Delta/2$ 

(s(s - a)), etc., already belong to k, we can simplify the description of  $Tr_{H}(k)$ . We can replace the quartic surface  $S_{+}(k)$  by a quadric surface (4.2)

 $C_+(k) = \{(u, v, w) \in k_+^3; uv + vw + wu = 1\}.$ One modifies the diagram (2.5) as follows: No. 2]

$$\widetilde{Tr}_{H}(k) \qquad \stackrel{\tau}{\longrightarrow} \qquad C_{+}(k)$$



 $\tilde{\mathscr{E}}_{H}(k)$ 

where  $\tau: Tr_H(k) \to C_+(k)$  is given by (4.4)  $\tau(t) = (\tan(A/2), \tan(B/2), \tan(C/2))$ . All other notation in (4.3) should be selfexplanatory and the proof goes similarly as before.

**Examples and comments.** When k = Q, elements of  $Tr_H(Q)$  are called "rational triangles" or "Heron triangles" ([1] Chap. V). Heron of Alexandria noted that t = (13, 14, 15) belongs to  $Tr_H(Q)$  with  $\Delta = 84$ . By our map (4.4) it corresponds to the point (1/2, 4/7, 2/3) of the quadric  $C_+(Q)$ . On the other hand, by our map (1.6) it corresponds to the point (1/4, 16/49, 4/9) of the quartic  $S_+(Q)$ .

Obviously, every right triangle  $t = (a, b, c) \in Tr(k)$  belongs to  $Tr_H(k)$ . Assume that  $C = \pi/2$ ; hence  $a^2 + b^2 = c^2$ . Then  $\tau(t) = (a/(b+c), b/(a+c), 1)$  and  $\theta(t) = (a^2/(b+c)^2, b^2/(a+c)^2, 1)$ . In both cases the image of right triangles with  $C = \pi/2$  is the intersection of the surface in  $k_+^3$  and the plane z = 1 (or w = 1).

Needless to say, all equilateral triangles  $t = (a, a, a), a \in k_+$ , are similar and so they correspond to a single point in the quartic surface. If k does not contain  $3^{\frac{1}{2}}$ , then  $t \notin Tr_H(k)$  because  $\Delta_t = (3^{\frac{1}{2}}/4)a$ .

§5. An involution. For  $t = (a, b, c) \in Tr(k)$ , put

(5.1) 
$$t' = (a', b', c')$$
 with  $a' = a(s - a)$ ,  
 $b' = b(s - b), c' = c(s - c), s = \frac{1}{2}(a + b + c).$ 

Then one finds

(5.2) 
$$s' - a' = (s - b)(s - c), s' - b' = (s - c)$$
  
 $(s - a), s' - c' = (s - a)(s - b),$ 

with  $s' = \frac{1}{2} (a' + b' + c')$ . By (5.1), (5.2), we obtain a map:  $Tr(k) \rightarrow Tr(k)$ . Furthermore, for

the image t'' = (a'', b'', c'') of t' = (a', b', c'), we get

(5.3) 
$$a'' = a'(s' - a') = ad, b'' = bd, c'' = cd,$$
  
with  $d = (s - a)(s - b)(s - c).$ 

In other words, we have  $t'' \sim t$  and so the map  $t \mapsto t'$  induces an involution \* of  $\widetilde{Tr}(k)$ . The only fixed point of \* is the class of equilateral triangle. By the diagram (2.5), we can transplant \* on  $S_+(k)$  and  $\tilde{\mathscr{E}}(k)$ . On the surface  $S_+(k)$ , the involution  $P = (x, y, z) \mapsto P = (x^*, y^*, z^*)$  is determined by the relation:

(5.4) 
$$xx^* = yy^* = zz^* = (xyz)/(x(yz)^{\frac{1}{2}} + y(zx)^{\frac{1}{2}} + z(xy)^{\frac{1}{2}}).$$

**Example** (Heron). Let k = Q and  $t = (a, b, c) = (13, 14, 15) \in Tr(Q)$ . We have s = 21, s - a = 8, s - b = 7, s - c = 6,  $\Delta = (s(s - a) (s - b)(s - c))^{\frac{1}{2}} = 84$ , hence  $t \in Tr_{H}(Q)$ . Next, by (5.1), we have t' = (a', b', c') = (104, 98, 90), s' = 146 and  $(\Delta')^{2} = 16482816 = 2^{9} \cdot 3^{2} \cdot 7^{2} \cdot 73$ , which means that  $t' \notin Tr_{H}(Q)$ ; in other words, the involution \* of Tr(Q) does not respect the subset  $Tr_{H}(Q)$ . Passing to the surface  $S_{+}(Q)$ , we have

$$\theta(t) = (1/2^2, 2^4/7^2, 2^2/3^2) \theta(t)^* = (2^5/73, 7^3/(2 \cdot 73), (2 \cdot 3^2)/73).$$

As for triples of elliptic curves, denoting by [P, Q] for the curve of type (3.1), we have

$$E_{t} = (E_{a}, E_{b}, E_{c}) = ([126, -84^{2}], [99, "], [70, "]),$$

$$E_{t}^{*} = (E_{a'}, E_{b'}, E_{c'}) = ([3444, -2^{9} \cdot 3^{2} \cdot 7^{2} \cdot 73], [4656, "], [6160, "]),$$

## References

- Dickson, L. E.: History of the Theory of Numbers. vol. 2, Chelsea, New York (1971).
- [2] Ono, T.: Triangles and elliptic curves. I ~ VI. Proc. Japan Acad., 70A, 106-108(1994): 70A, 223-225 (1994); 70A, 311-314 (1994); 71A, 104-106 (1995); 71A, 137-139 (1995); 71A, 184-186 (1995).

I take this opportunity to make a correction to my paper (VI). On p. 186, in (4.6),  $x^3 + 4x^2 - 3x$  should read  $x^3 + 2x^2 - 3x$ .