Triangles and Elliptic Curves. VII

By Takashi ONO
Department of Mathematics, The Johns Hopkins University, U. S. A. (Communicated by Shokichi Iyanaga, M. J. A., Feb. 13, 1996)

This is a continuation of series of papers [2] each of which will be referred to as (I), (II), (III), (IV), (V), (VI) in this paper. In (VI) we considered exclusively real triangles $t=(a, b, c)$ and showed that there is a $1-1$ correspondence between the classes of similarity of t 's and the isomorphism classes of triples \boldsymbol{E}_{t} 's of elliptic curves. In this paper, we pursue the same theme for those objects rational over any subfield k of \boldsymbol{R}. This time, we shall introduce a third object (a quartic surface over \boldsymbol{Q}) in addition to triangles and elliptic curves to clarify the matter.
§1. Tr and \boldsymbol{S}_{+}. As in (VI), we begin with the set
(1.1) $\operatorname{Tr}=\left\{t=(a, b, c) \in \boldsymbol{R}^{3} ; 0<a<b+c\right.$,

$$
0<b<c+a, 0<c<a+b\}
$$

For $t, t^{\prime} \in T r$, we write $t \sim t^{\prime}$ if they are similar, i.e., if $t=r t^{\prime}$ for some $r \in \boldsymbol{R}$. For any subfield $k \subset \boldsymbol{R}$, put
(1.2) $\quad \operatorname{Tr}(k)=\operatorname{Tr} \cap k^{3}$.

If $t \sim t^{\prime}, t, t^{\prime} \in \operatorname{Tr}(k)$, note that $t=r t^{\prime}$ with $r \in k$. So we can speak of the embedding $\widetilde{\operatorname{Tr}}(k) \subset \widetilde{\operatorname{Tr}}$ of quotients in the obvious way.

Next, we consider the set

$$
\begin{align*}
& S_{+}=\left\{P=(x, y, z) \in \boldsymbol{R}^{3} ; x, y, z>0,\right. \tag{1.3}\\
& \left.\quad(x y)^{\frac{1}{2}}+(y z)^{\frac{1}{2}}+(z x)^{\frac{1}{2}}=1\right\},
\end{align*}
$$

where (and hereafter) we assume that $a^{\frac{1}{2}}>0$ when $a>0$. On rationalizing the defining relation in (1.3), we have
(1.4) $S_{+}=\left\{P \in \boldsymbol{R}_{+}^{3} ; 1>x y+y z+z x\right.$, $\left.(1-x y-y z-z x)^{2}-4(x+y+z) x y z-8 x y z=0\right\}$, where (and hereafter) we put, for $k \subset R, k_{+}=$ $\{a \in k ; a>0\}$.

For $k \subset \boldsymbol{R}$, we put

$$
\begin{equation*}
S_{+}(k)=S_{+} \cap k^{3} . \tag{1.5}
\end{equation*}
$$

Let A, B, C be angles of $t=(a, b, c)$ so that A is between sides b and c; similarly for B, C. Call θ a map: $\operatorname{Tr} \rightarrow \boldsymbol{R}_{+}^{3}$ given by
(1.6) $\quad \theta(t)=\left(\tan ^{2}(A / 2), \tan ^{2}(B / 2), \tan ^{2}(C / 2)\right)$. Since θ is defined by angles only, it induces a map $\tilde{\theta}: \widetilde{T r} \rightarrow \boldsymbol{R}_{+}^{3}$.
(1.8) Theorem. For any subfield $k \subset \boldsymbol{R}$, the map
$\tilde{\theta}$ induces a bijection:

$$
\widetilde{\operatorname{Tr}}(k) \simeq S_{+}(k) .
$$

Proof. By abuse of notation, put
(1.9) $f(\alpha)=\tan \alpha, \alpha \in I=(0, \pi / 2)$.

Note that f is a monotone increasing function with range $(0,+\infty)$ which satisfies the functional equation
(1.10) $f(\alpha) f(\pi / 2-\alpha)=1, \alpha \in I$, and the (stronger form of) addition formula
(1.11) $\quad f(\alpha) f(\beta)+f(\beta) f(\gamma)+f(\gamma) f(\alpha)=1$ $\Leftrightarrow \alpha+\beta+\gamma=\pi / 2$.
Now let $t=(a, b, c) \in \operatorname{Tr}$ and A, B, C be angles of t as above. Putting $\alpha=A / 2, \beta=B / 2$, $\gamma=C / 2$ in (1.9), (1.11), we find that the point $\theta(t)=\left(f(\alpha)^{2}, f(\beta)^{2}, f(\gamma)^{2}\right)$ belongs to S_{+}.
It is obvious that $\theta(t)=\theta\left(t^{\prime}\right)$ implies $t \sim t^{\prime}$. Hence the map $\tilde{\theta}: \widetilde{\operatorname{Tr}} \rightarrow S_{+}$is injective. Next, for a subfield $k \subset \boldsymbol{R}$, let $t=(a, b, c) \in \operatorname{Tr}(k)$. Then $\cos A=\left(b^{2}+c^{2}-a^{2}\right) / 2 b c$ belongs to k and so does $f(\alpha)^{2}=(1-\cos A) /(1+\cos A)$; similarly for $f(\beta)^{2}, f(\gamma)^{2}$. Hence $\tilde{\theta}$ induces an injection $\widetilde{\operatorname{Tr}}(k) \rightarrow S_{+}(k)$. Finally, it remains to show that this map is surjective. So take any point $P=(x, y, z) \in S_{+}(k)$. By (1.11), we can find angles $A, B, C, 0<A, B, C<\pi$ so that A $+B+C=\pi$ and that $x=f(\alpha)^{2}, y=f(\beta)^{2}$, $z=f(\gamma)^{2}$, where $\alpha=A / 2$, etc. Choose a triangle $t=(a, b, c) \in \operatorname{Tr}$ with angles A, B, C such that $c=1$. (In case t happens to be a right triangle, we may assume without loss of generality that $C=\pi / 2$, i.e., $c=$ the hypotenuse of $t=$ 1.) Note that $\cos A=\left(1-f(\alpha)^{2}\right) /\left(1+f(\alpha)^{2}\right)$ $=(1-x) /(1+x) \in k$; similarly $\cos B, \cos C$ $\in k$. On the other hand, though $\sin A=$ $2 f(\alpha) /\left(1+f(\alpha)^{2}\right)$ may not belong to k in general, note also that $\sin ^{2} A=4 x /(1+x)^{2} \in k$; similarly for $\sin ^{2} B, \sin ^{2} C$. On squaring each term of the sine formula, we have
(1.11) $a^{2} / \sin ^{2} A=b^{2} / \sin ^{2} B=1 / \sin ^{2} C$, so we see that a^{2}, b^{2} belong to k. Since $\cos A$, $\cos B$ are both non-zero elements of k (by our assumption on the angle C), the cosine formulas
$a^{2}=b^{2}+1-2 b \cos A, b^{2}=1+a^{2}-2 a \cos B$ imply that $t=(a, b, c) \in \operatorname{Tr}(k)$ with $\theta(t)=P$.
Q.E.D.
§2. Tr and \mathscr{E}. In (VI) §3, we associated to each $t \in \operatorname{Tr}$ an ordered triple $\boldsymbol{E}_{t}=\left\{E_{a}, E_{b}\right.$, E_{c}) of elliptic curves defined over \boldsymbol{R} :

$$
\begin{aligned}
& E_{a}: Y^{2}=x^{3}+P_{a} x^{2}+Q X, \\
& \\
& \quad P_{a}=\frac{1}{2}\left(b^{2}+c^{2}-a^{2}\right),
\end{aligned}
$$

$$
\begin{align*}
& E_{b}: Y^{2}=x^{3}+P_{b} x^{2}+Q X, \tag{2.1}\\
& P_{b}=\frac{1}{2}\left(c^{2}+a^{2}-b^{2}\right), \\
& E_{c}: Y^{2}=x^{3}+P_{c} x^{2}+Q X, \\
& P_{c}=\frac{1}{2}\left(a^{2}+b^{2}-c^{2}\right)
\end{align*}
$$

with $Q=-(\text { area of } t)^{2}=\frac{1}{16}\left(a^{4}+b^{4}+c^{4}-\right.$ $2 a^{2} b^{2}-2 b^{2} c^{2}-2 c^{2} a^{2}$).

Let us denote by \mathscr{E} the set of all $\boldsymbol{E}_{t}, t \in T r$, and call ψ the map $\operatorname{Tr} \rightarrow \mathscr{E}$ given by
(2.2)

$$
\phi(t)=\boldsymbol{E}_{t}, t \in \operatorname{Tr}
$$

For $t=(a, b, c), t^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \in T r$, triples $\boldsymbol{E}_{t}, \boldsymbol{E}_{t^{\prime}}$ are said to be isomorphic over \boldsymbol{R} (written $\boldsymbol{E}_{t} \cong \boldsymbol{E}_{t^{\prime}}$) if E_{a}, E_{b}, E_{c} are isomorphic over \boldsymbol{R} to $E_{a^{\prime}}, E_{b^{\prime}}, E_{c^{\prime}}$, respectively. In this situation, we know that
(2.3)(VI, (3.5)) $\quad t \sim t^{\prime} \Leftrightarrow \boldsymbol{E}_{t} \cong \boldsymbol{E}_{t^{\prime}}, t, t^{\prime} \in \operatorname{Tr}$.

For a subfield $k \subset \boldsymbol{R}$, if $t=(a, b, c) \in \operatorname{Tr}(k)$ then elliptic curves E_{a}, E_{b}, E_{c} are all defined over k. Denote by $\mathscr{E}(k)$ the set of all $\boldsymbol{E}_{t}, t \in$ $\operatorname{Tr}(k)$. The map ψ induces a map (written ψ again) $\operatorname{Tr}(k) \rightarrow \mathscr{E}(k)$. For $t, t^{\prime} \in \operatorname{Tr}(k)$, the isomorphism $\boldsymbol{E}_{t} \cong \boldsymbol{E}_{t^{\prime}}$ over k is defined in the obvious way. Assume now that $t \sim t^{\prime}, t, t^{\prime} \in$ $\operatorname{Tr}(k)$; so $t=r t^{\prime}, r \in k$. Since P_{a}, Q are forms in $\boldsymbol{Q}[a, b, c]$ of degree 2,4 , respectively, we have $P_{a}(t)=r^{2} P_{a}\left(t^{\prime}\right), Q(t)=r^{4} Q\left(t^{\prime}\right)$. Then the $\operatorname{map}(X, Y) \mapsto\left(r^{2} X, r^{3} Y\right)$ induces an isomorphism $E_{a} \cong E_{a^{\prime}}$ over k; similarly for E_{b}, E_{c}. Denote by $\tilde{\mathscr{E}}(k)$ the quotient of $\mathscr{E}(k)$ defined by isomorphisms over k. Then the map ψ induces a map $\tilde{\phi}: \widetilde{\operatorname{Tr}}(k) \rightarrow \tilde{\mathscr{E}}(k)$ which is surjective by the definition of $\mathscr{E}(k)$.
(2.4)Theorem. For any subfield $k \subset \boldsymbol{R}$, the map $\tilde{\psi}$ is a bijection:

$$
\widetilde{\operatorname{Tr}}(k) \simeq \widetilde{\mathscr{E}}(k)
$$

Proof. We only have to prove that the map is injective. So assume that $\boldsymbol{E}_{t} \cong \boldsymbol{E}_{t^{\prime}}$ over k, t, t^{\prime} $\in \operatorname{Tr}(k)$. Then the isomorphism is, a fortiori, de-
fined over \boldsymbol{R}, and our assertion follows from (2.3),
Q.E.D.

Now that we have two bijections $\tilde{\theta}, \tilde{\phi}$, we get the third bijection automatically. However, we prefer to find a bijection $\tilde{\varphi}: \tilde{\mathscr{E}}(k) \simeq S_{+}(k)$ so that the diagram (2.5) becomes commutative.
§3. \mathscr{E} and \boldsymbol{S}_{+}. When an elliptic curve of the form
(3.1) $Y^{2}=X^{3}+P X^{2}+Q X, P, Q \in \boldsymbol{R}, Q<0$, is considered, the quantity λ is handier than the invariant j. It is defined by

(3.2) $\quad \lambda=N / M<0$

where M, N are determined by the condition
(3.3) $Y^{2}=X^{3}+P X^{2}+Q X=X(X+M)(X+N)$, $M>0, N<0$.
For a subfield $k \subset \boldsymbol{R}$ and $t=(a, b, c) \in$ $\operatorname{Tr}(k)$, each member E_{a}, etc., of the triple $\boldsymbol{E}_{t} \in$ $\mathscr{E}(k)$ is certainly of type (3.1) and so we can speak of the quantity
(3.4) $\lambda_{a}=\lambda\left(E_{a}\right)=\left(P_{a}-b c\right) /\left(P_{a}+b c\right)$
$=-(1-\cos A) /(1+\cos A)=-\tan ^{2}(A / 2)$, similarly for b, c.
Call φ the map $\mathscr{E}(k) \rightarrow k^{3}$ given by
(3.5) $\quad \varphi\left(\boldsymbol{E}_{t}\right)=\left(-\lambda_{a},-\lambda_{b},-\lambda_{c}\right)$.

In view of (2.4), (3.4), φ induces a map
(3.6)

$$
\tilde{\varphi}: \tilde{\mathscr{E}}(k) \rightarrow k^{3} .
$$

Furthermore, by (1.6), we find $\tilde{\theta}=\tilde{\varphi} \tilde{\phi}$ and hence we have proved
(3.7) Theorem. The map $\tilde{\varphi}$ gives a bijection:

$$
\tilde{\mathscr{E}}(k) \leadsto S_{+}(k)
$$

§4. A special case. For a subfield $k \subset \boldsymbol{R}$, let us define a subset of $\operatorname{Tr}(k)$ given by (4.1) $\operatorname{Tr}(k)_{H}=\left\{t=(a, b, c) \in \operatorname{Tr}(k) ; \Delta_{t} \in k\right\}$, where $\Delta_{t}=\Delta=$ the area of $t=(s(s-a)(s-b)$ $(s-c))^{\frac{1}{2}}=\frac{1}{2} b c \sin A$. Since $\tan (A / 2)=\Delta /$ ($s(s-a)$), etc., already belong to k, we can simplify the description of $\operatorname{Tr}_{H}(k)$. We can replace the quartic surface $S_{+}(k)$ by a quadric surface

$$
\begin{equation*}
C_{+}(k)=\left\{(u, v, w) \in k_{+}^{3} ; u v+v w+w u=1\right\} . \tag{4.2}
\end{equation*}
$$

One modifies the diagram (2.5) as follows:

where $\tau: \operatorname{Tr}_{H}(k) \rightarrow C_{+}(k)$ is given by (4.4) $\quad \tau(t)=(\tan (A / 2), \tan (B / 2), \tan (C / 2))$. All other notation in (4.3) should be selfexplanatory and the proof goes similarly as before.

Examples and comments. When $k=\boldsymbol{Q}$, elements of $\operatorname{Tr}_{\boldsymbol{H}}(\boldsymbol{Q})$ are called "rational triangles" or "Heron triangles" ([1] Chap. V). Heron of Alexandria noted that $t=(13,14,15)$ belongs to $\operatorname{Tr}_{H}(\boldsymbol{Q})$ with $\Delta=84$. By our map (4.4) it corresponds to the point $(1 / 2,4 / 7,2 / 3)$ of the quadric $\boldsymbol{C}_{+}(\boldsymbol{Q})$. On the other hand, by our map (1.6) it corresponds to the point $(1 / 4,16 / 49,4 / 9)$ of the quartic $S_{+}(\boldsymbol{Q})$.

Obviously, every right triangle $t=(a, b, c)$ $\in \operatorname{Tr}(k)$ belongs to $\operatorname{Tr}_{H}(k)$. Assume that $C=$ $\pi / 2$; hence $a^{2}+b^{2}=c^{2}$. Then $\tau(t)=(a /(b+c)$, $b /(a+c), 1)$ and $\theta(t)=\left(a^{2} /(b+c)^{2}, b^{2} /(a+c)^{2}\right.$, 1). In both cases the image of right triangles with $C=\pi / 2$ is the intersection of the surface in $k_{+}{ }^{3}$ and the plane $z=1$ (or $w=1$).

Needless to say, all equilateral triangles $t=$ ($a, a, a), a \in k_{+}$, are similar and so they correspond to a single point in the quartic surface. If k does not contain $3^{\frac{1}{2}}$, then $t \notin \operatorname{Tr}_{H}(k)$ because $\Delta_{t}=\left(3^{\frac{1}{2}} / 4\right) a$.
§5. An involution. For $t=(a, b, c) \in \operatorname{Tr}(k)$, put
(5.1) $t^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ with $a^{\prime}=a(s-a)$, $b^{\prime}=b(s-b), c^{\prime}=c(s-c), s=\frac{1}{2}(a+b+c)$.
Then one finds
(5.2) $s^{\prime}-a^{\prime}=(s-b)(s-c), s^{\prime}-b^{\prime}=(s-c)$

$$
(s-a), s^{\prime}-c^{\prime}=(s-a)(s-b)
$$

with $s^{\prime}=\frac{1}{2}\left(a^{\prime}+b^{\prime}+c^{\prime}\right)$. By (5.1), (5.2), we obtain a map: $\operatorname{Tr}(k) \rightarrow \operatorname{Tr}(k)$. Furthermore, for
the image $t^{\prime \prime}=\left(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right)$ of $t^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$, we get
(5.3) $\quad a^{\prime \prime}=a^{\prime}\left(s^{\prime}-a^{\prime}\right)=a d, b^{\prime \prime}=b d, c^{\prime \prime}=c d$, with $d=(s-a)(s-b)(s-c)$.
In other words, we have $t^{\prime \prime} \sim t$ and so the map $t \mapsto t^{\prime}$ induces an involution $*$ of $\widetilde{\operatorname{Tr}}(k)$. The only fixed point of $*$ is the class of equilateral triangle. By the diagram (2.5), we can transplant ${ }^{*}$ on $S_{+}(k)$ and $\tilde{\mathscr{E}}(k)$. On the surface $S_{+}(k)$, the involution $P=(x, y, z) \mapsto P=\left(x^{*}, y^{*}, z^{*}\right)$ is determined by the relation:

$$
\begin{gather*}
x x^{*}=y y^{*}=z z^{*}=(x y z) /\left(x(y z)^{\frac{1}{2}}\right. \tag{5.4}\\
\left.\quad+y(z x)^{\frac{1}{2}}+z(x y)^{\frac{1}{2}}\right)
\end{gather*}
$$

Example (Heron). Let $k=\boldsymbol{Q}$ and $t=(a$, $b, c)=(13,14,15) \in \operatorname{Tr}(\boldsymbol{Q})$. We have $s=21$, $s-a=8, s-b=7, s-c=6, \Delta=(s(s-a)$
$(s-b)(s-c))^{\frac{1}{2}}=84$, hence $t \in \operatorname{Tr}_{H}(\boldsymbol{Q})$. Next, by (5.1), we have $t^{\prime}=\left(a^{\prime} ; b^{\prime}, c^{\prime}\right)=(104$, $98,90), s^{\prime}=146$ and $\left(\Delta^{\prime}\right)^{2}=16482816=2^{9}$. $3^{2} \cdot 7^{2} \cdot 73$, which means that $t^{\prime} \notin \operatorname{Tr}_{H}(\boldsymbol{Q})$; in other words, the involution $*$ of $\widetilde{\operatorname{Tr}}(\boldsymbol{Q})$ does not respect the subset $\widetilde{T r}_{H}(\boldsymbol{Q})$. Passing to the surface $S_{+}(\boldsymbol{Q})$, we have

$$
\begin{aligned}
& \theta(t)=\left(1 / 2^{2}, 2^{4} / 7^{2}, 2^{2} / 3^{2}\right) \\
& \theta(t)^{*}=\left(2^{5} / 73,7^{3} /(2 \cdot 73),\left(2 \cdot 3^{2}\right) / 73\right)
\end{aligned}
$$

As for triples of elliptic curves, denoting by $[P, Q]$ for the curve of type (3.1), we have

$$
\begin{array}{r}
\boldsymbol{E}_{t}=\left(E_{a}, E_{b}, E_{c}\right)=\left(\left[126,-84^{2}\right],\left[99,{ }^{\prime \prime}\right]\right. \\
\boldsymbol{E}_{t}^{*}=\left(E_{a^{\prime}}, E_{b^{\prime}}, E_{c^{\prime}}\right)=\left(\left[3444,-2^{9} \cdot 3^{2} . "\right]\right), \\
\left.\left.7^{2} \cdot 73\right],[4656, "],[6160, "]\right)
\end{array}
$$

References

[1] Dickson, L. E.: History of the Theory of Numbers. vol. 2, Chelsea, New York (1971).
[2] Ono, T.: Triangles and elliptic curves. I ~VI. Proc. Japan Acad., 70A, 106-108(1994): 70A, 223-225 (1994) ; 70A, 311-314 (1994); 71A, 104-106 (1995); 71A, 137-139 (1995); 71A, 184-186 (1995).

I take this opportunity to make a correction to my paper (VI). On p. 186 , in (4.6), $x^{3}+4 x^{2}-3 x$ should read $x^{3}+2 x^{2}-3 x$.

