The Embeddings of Discrete Series into Principal Series for an Exceptional Real Simple Lie Group of Type G_2

By Tetsumi YOSHINAGA^{*)} and Hiroshi YAMASHITA^{**)} (Communicated by Kiyosi ITÔ, M. J. A., April 12, 1996)

Let G_C be a connected, simply connected, complex simple Lie group of type G_2 , G its normal real form, and K a maximal compact subgroup of G. In this paper, we give a complete description of the embeddings of discrete series representations of G into principal series. The result is Theorem 2 in §6

1. Structures of G and its Lie algebra. Let G, K be as above, \mathfrak{g}_0 (resp. \mathfrak{k}_0) the Lie algebra of G (resp. K), $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0$ a Cartan decomposition of \mathfrak{g}_0 . Denote by \mathfrak{g} (resp. \mathfrak{k} , \mathfrak{p}) the complexification of \mathfrak{g}_0 (resp. \mathfrak{k}_0 , \mathfrak{p}_0). We take a compact Cartan subalgebra \mathfrak{t}_0 of \mathfrak{g}_0 and denote the root system of \mathfrak{g} relative to $\mathfrak{t}(=\mathfrak{t}_0 \otimes C)$ by Δ . Let Δ_c (resp. Δ_n) be the set of compact (resp. noncompact) roots and α_1 (resp. α_2) a short (resp. long) simple root in Δ . We may assume that α_1 is compact, that α_2 is noncompact and that $\Delta_c^+ = \{\alpha_1, 3\alpha_1 + 2\alpha_2\}$. We can take root vectors E_{ij} in the root subspace for the root $i\alpha_1 + j\alpha_2 \in \Delta$ in the following way:

$$\begin{split} B(E_{ij}, E_{-i,-j}) &= 2 / |i\alpha_1 + j\alpha_2|^2, \quad E_{-i,-j} = -\overline{E_{ij}}, \\ [E_{10}, E_{01}] &= E_{11}, \quad [E_{10}, E_{11}] = 2E_{21}, \\ [E_{10}, E_{21}] &= 3E_{31}, \quad [E_{32}, E_{-3,-1}] = E_{01}, \end{split}$$

where $B(\cdot, \cdot)$ is the Killing form of g and \bar{X} is the complex conjugate of X relative to the compact real form $\mathfrak{k}_0 \oplus \sqrt{-1}\mathfrak{p}_0$ of g. Set $H_{ij} = [E_{ij},$ $E_{-i,-i}$]. Equip g with the inner product (\cdot , \cdot) defined by $(X, Y) = -B(X, \overline{Y})$. Define a subspace \mathfrak{a}_0 of \mathfrak{g}_0 as $\mathfrak{a}_0 = \mathbf{R}(E_{01} + E_{0,-1}) + \mathbf{R}(E_{21})$ $+ E_{-2,-1}$), then \mathfrak{a}_0 is a maximal abelian subspace of \mathfrak{p}_0 , and equip \mathfrak{a}_0^* with the lexicographic order relative to the ordered basis $(E_{01} + E_{0,-1}, E_{21} +$ $E_{-2,-1}$) of \mathfrak{a}_0 . Let Ψ be the system of restricted roots of g_0 with respect to a_0 and Ψ^+ a positive system of Ψ . Then we have an Iwasawa decomposition $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{a}_0 \oplus \mathfrak{n}_0$ (resp. G = KAN) of \mathfrak{g}_0 (resp. G). We see that $\mathfrak{k}_0 \simeq \mathfrak{su}(2) \oplus \mathfrak{su}(2)$ and $\mathfrak{k} = \mathfrak{Sl}(2, \mathbb{C}) \oplus \mathfrak{Sl}(2, \mathbb{C})$. The root system Δ_c is of type $A_1 \oplus A_1$, and direct computations give

that $K \simeq (SU(2) \times SU(2))/D$ with $D = \{1, (-1_2, -1_2)\}$, where 1_2 is the unit matrix of degree 2.

Let M be the centralizer of A in K, then $M = \{1, m_1, m_2, m_1m_2\}$ with

$$m_{1} = \left(\begin{pmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{pmatrix}, \begin{pmatrix} -\sqrt{-1} & 0 \\ 0 & \sqrt{-1} \end{pmatrix} \right)^{\dagger},$$
$$m_{2} = \left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right)^{\dagger},$$

where g^{\ddagger} is the image of $g \in SU(2) \times SU(2)$ under the covering homomorphism of $SU(2) \times SU(2)$ onto K. Define a unitary character $\sigma_{\varepsilon_1,\varepsilon_2}$ of M through $\sigma_{\varepsilon_1,\varepsilon_2}(m_j) = \varepsilon_j$ for j = 1,2, then $M = \{\sigma_{\varepsilon_1,\varepsilon_2} \mid \varepsilon_j = \pm 1 \ (j = 1,2)\}$. For each $\mu \in \mathfrak{a}^* = \mathfrak{a}_0^* \otimes C$ gives an one-dimensional representation e^{μ} of the vector group $A = \exp \mathfrak{a}_0$. Put P = MAN and we consider the principal series $\operatorname{Ind}_P^G(\sigma_{\varepsilon_1,\varepsilon_2} \otimes e^{\mu} \otimes 1_N)$, of G induced from the minimal parabolic subgroup P.

2. Irreducible K-modules. Let X, Y, H be elements in $\mathfrak{Sl}(2, \mathbb{C})$ with [H, X] = 2X, [H, Y] = -2Y, [X, Y] = H. The (d + 1)-dimensional irreducible $\mathfrak{Sl}(2, \mathbb{C})$ -module is denoted by V_d . Take a basis $\{e_p^{(d)} \mid p = -d, -d+2, \ldots, d\}$ of V_d satisfying the relation $(H_{d, 2}^{(d)} = h_2^{(d)})$

$$\begin{cases} H \cdot e_p^{-} = p e_p \\ X \cdot e_p^{(d)} = x_p^{(d)} e_{p+2}^{(d)} \\ Y \cdot e_p^{(d)} = x_{p-2}^{(d)} e_{p-2}^{(d)} \end{cases} (p = -d, -d + 2, \dots, d) \cdot$$

Here, $x_p^{(d)} = \frac{1}{2}\sqrt{(d-p)(d+p+2)}$. We regard $e_p^{(d)}$ as 0 if $p \notin \{-d, -d+2, \ldots, d\}$. For a Δ_c^+ -dominant, integral linear form λ on t, put nonnegative integers r, s as $r = \lambda(H_{10}), s = \lambda(H_{32})$. The finite-dimensional irreducible representation of K with highest weight λ is denoted by $(\tau_{\lambda}, V_{\lambda})$. Then $V_{\lambda} \simeq V_r \otimes V_s$. Here \otimes means an exterior tensor product. So we identify these two modules and take a basis $\{e_{pq}^{(rs)}\}$ of $V_r \otimes V_s$. Here $e_{pq}^{(rs)} = e_p^{(r)} \otimes e_q^{(s)}$. Note that $\mathfrak{p} \simeq V_3 \otimes V_1$ as K-modules.

^{*)} Department of Mathematics, Kyoto University.

^{**)} Department of Mathematics, Hokkaido University.

No. 4]

3. Gradient type differential operators. The K-module $V_{\lambda} \otimes \mathfrak{p}$ decomposes as $V_{\lambda} \otimes \mathfrak{p} \simeq \bigoplus_{\beta \in \Delta_n} m(\beta) \cdot V_{\lambda+\beta}$, with multiplicity $m(\beta) = 0,1$ for $\beta \in \Delta_n$. Take a positive system Δ^+ of Δ containing Δ_c^+ , and put $V^- = \bigoplus_{\beta \in \Delta_n^+} m(-\beta) \cdot V_{\lambda-\beta}$, where $\Delta_n^+ = \Delta^+ \cap \Delta_n$ is the set of positive noncompact roots. Let P_{λ} be the orthogonal projection of $V_{\lambda} \otimes \mathfrak{p}$ onto V^- . For a representation (τ, V) of K, define two function spaces $C_{\tau}^{\infty}(G)$ and $C_{\tau}^{\infty}(G; \mathbf{1}_N)$ as

$$C_{\tau}^{\infty}(G) = \{ f : G \xrightarrow{c^{\ast}} V \mid f(kg) = \tau(k) f(g) \\ (\forall (k, g) \in K \times G) \},$$

$$C^{\infty}_{\tau}(G ; 1_N) = \{ f : G \xrightarrow{c^*} V \mid f(kgn) = \tau(k) f(g) \\ (\forall (k, g, n) \in K \times G \times N) \}.$$

We define a gradient-type differential operator \mathscr{D}_{λ} on $C^{\infty}_{\tau_{\lambda}}(G)$ by

$$\begin{aligned} (\nabla f)(g) &= \sum_{j} L_{X_{j}} f(g) \otimes \bar{X}_{j}, \\ (\mathcal{D}_{\lambda} f)(g) &= P_{\lambda} (\nabla f(g)), \end{aligned}$$

where L_X is the differentiation with respect to the right invariant vector field on G defined by an element X in \mathfrak{g} and $\{X_j\}$ is an orthonormal basis of \mathfrak{p} relative to the inner product (\cdot, \cdot) . Put $\mathcal{D}_{\lambda,1_N} = \mathcal{D}_{\lambda}|_{C_{\Gamma}^{\infty}(G;1_N)}$.

4. Parametrization of discrete series of G. Let Ξ_c be the totality of Δ_c^+ -dominant, regular, integral linear forms Λ on t. For each $\Lambda \in \Xi_c$, Δ^+ denotes the positive system of Δ for which Λ is Δ^+ -dominant. By Harish-Chandra [1, Theorem 16], discrete series representations of G is parametrized by Ξ_c and we denote the discrete series of G with Harish-Chandra parameter Λ by π_{Λ} . Let $\Delta_J^+(J = I, II, III)$ be positive systems of Δ with simple roots listed below:

$$\frac{J}{\text{simple roots } \alpha_1, \alpha_2} \frac{II}{\alpha_1 + \alpha_2, -\alpha_2} \frac{III}{-\alpha_1 - \alpha_2, 3\alpha_1 + 2\alpha_2}$$

For a discrete series π_A of G, the corresponding positive system $\Delta^+ = \{\alpha \in \Delta \mid (\alpha, \Lambda) > 0\} \subset \Delta$ is one of the above Δ_J^+ 's. Define three subsets $\mathcal{E}_J (J = I, II, III)$ of \mathcal{E}_c by $\mathcal{E}_J = \{\Lambda \in \mathcal{E}_c \mid \Delta^+ = \Delta_J^+\}$. Put $\rho_c = \frac{1}{2} \sum_{\alpha \in \Delta_c^+} \alpha, \rho_n = \frac{1}{2} \sum_{\alpha \in \Delta_n^+} \alpha$ and $\lambda = \Lambda - \rho_c + \rho_n$. The discrete series π_A has the lowest K-type τ_λ and λ is called the *Blattner parameter* of π_A .

5. Method for the determination of embeddings. Take a discrete series π_A of G and set Δ^+ as above. The Blattner parameter λ of π_A is said to be far from the walls if $\lambda - \sum_{\beta \in Q} \beta$ is Δ_c^+ -dominant for any subset Q of Δ_n^+ . For an irreducible representation $\xi = \sigma \otimes e^{\mu}$ with $\sigma \in \widehat{M}$ and $\mu \in \mathfrak{a}^*$, put $\tilde{\xi} = \sigma \otimes e^{\mu + \rho_P}$. Here $\rho_P \in \mathfrak{a}_0^*$ is defined by $\rho_P(H) = \frac{1}{2} \operatorname{tr} \operatorname{ad}(H) |_{n_0}$ for $H \in \mathfrak{a}_0$. It is easily seen that MA acts on $\operatorname{Ker} \mathcal{D}_{\lambda, 1_N}$ by right translation. The determination of the embeddings of discrete series into principal series as (\mathfrak{g}, K) -modules is based on the following theorem proved for gengeral semisimple Lie groups with finite center.

Theorem 1 (cf. [3, Theorem 3.5]). If the Blattner parameter λ of π_{Λ} is far from the walls, then

 $\operatorname{Hom}_{(\mathfrak{g},K)}(\pi_{\Lambda}^{*}, \operatorname{Ind}_{P}^{G}(\xi \otimes 1_{N})) \simeq \operatorname{Hom}_{(\mathfrak{a},M)}(\tilde{\xi}^{*}, \operatorname{Ker} \mathcal{D}_{\lambda,1_{N}}),$ as linear spaces. Here π_{Λ}^{*} denotes the discrete series of G contragredient to π_{Λ} .

6. Complete descrition of embeddings. Define an automorphism u of g by

$$u = \left(\exp \frac{\pi}{4} \operatorname{ad}(E_{01} - E_{0,-1}) \right)$$
$$\cdot \left(\exp \frac{\pi}{4} \operatorname{ad}(E_{21} - E_{-2,-1}) \right).$$

Note that u maps t onto a. For $\Lambda \in \Xi_I$, let $\Lambda_J(J = I, II, III)$ be the unique element in Δ_J^+ $\cap W \cdot \Lambda$, where W is the Weyl group of Δ . Further let $\tilde{\Lambda}$ be the Ψ^+ -dominant element in a^{*} conjugate to $\Lambda \circ u^{-1}$ under the action of the Weyl group $W(\Psi)$ of Ψ . Define discrete series representations $\pi_J(J = I, II III)$ by $\pi_J = \pi_{\Lambda_J}$. Then these three π_J 's are the mutually inequivalent discrete series with the same infinitesimal character Λ . Put $\lambda_j, j = 1, 2$, as $\lambda_1 \circ u = -(2\alpha_1 + \alpha_2)$ and $\lambda_2 \circ u = 3\alpha_1 + \alpha_2$, then these λ_j 's are simple roots of Ψ^+ . The reflection relative to λ_j is denoted by s_j . The following theorem describes the embeddings of discrete series of G into its principal series.

Theorem 2. For $\Lambda \in E_I$, J = I, II, III, $\sigma_{\varepsilon_1,\varepsilon_2} \in \hat{M}$, $\mu \in \mathfrak{a}^*$, dim $\operatorname{Hom}_{(\mathfrak{g},K)}(\pi_J, \operatorname{Ind}_P^G(\sigma_{\varepsilon_1,\varepsilon_2} \otimes e^{\mu} \otimes 1_N)) \leq 1$, and the equality holds if and only if $\mu = s \cdot \tilde{\Lambda}$ and $(\varepsilon_1, \varepsilon_2) \in S_{\Lambda}(J, s)$ with an $s \in W(J)$, where W(J) and $S_{\Lambda}(J, s)$ are subsets of $W(\Psi)$ and $\{\pm 1\} \times \{\pm 1\}$ defined respectively as follows: $W(I) = \{s_1, s_2s_1\},$ $W(II) = \{1, s_1, s_2, s_1s_2, s_2s_1\},$ $W(III) = \{s_2, s_1s_2\},$

and

$$S_{A}(II, 1) = \{((-1)^{\frac{1}{2}(r'+s')}, (-1)^{\frac{1}{2}(r'-s'+2)}), \\ ((-1)^{\frac{1}{2}(r'+s'-2)}, \pm 1)\}, \\ S_{A}(J, s_{1}) = \begin{cases} \{((-1)^{r'+1}, (-1)^{\frac{1}{2}(r'+s')})\} \\ for J = I \\ \{((-1)^{\frac{1}{2}(r'+s')}, (-1)^{r'+1}), \\ ((-1)^{\frac{1}{2}(r'+s'+2)}, \pm 1)\} \\ for J = II, \end{cases}$$

$$S_{A}(J, s_{2}) = \begin{cases} \{((-1)^{r'}, (-1)^{\frac{1}{2}(r'-s'+2)}), \\ ((-1)^{r'+1}, \pm 1)\} \\ for J = II \\ \{((-1)^{\frac{1}{2}(r'-s')}, (-1)^{r'+1}), \\ ((-1)^{\frac{1}{2}(r'-s'+2)}, (-1)^{r'+1}), \\ ((-1)^{\frac{1}{2}(r'-s'+2)}, (-1)^{r'})\} \\ for J = III, \end{cases}$$

$$S_{A}(J, s_{1}s_{2}) = \{(\pm 1, (-1)^{\frac{1}{2}(r'+s'+2)})\} \\ for J = II, III, \end{cases}$$

$$S_{A}(J, s_{2}s_{1}) = \{((-1)^{\frac{1}{2}(r'-s'+2)}, \pm 1)\} \\ for J = I, III, \end{cases}$$

Here $r' = \Lambda(H_{10})$ and $s' = \Lambda(H_{32})$.

7. Sketch of the proof of Theorem 2. Here we illustrate the outline of the proof in case J = I, where $r = \lambda(H_{10})$ and $s = \lambda(H_{32})$ are nonnegative integers so that s - r is even and is not less than 4. Let f be a function in $C^{\infty}_{\tau_{\lambda}}(G; \mathbf{1}_{N})$, then f can be expressed uniquely in the form $f(g) = \sum c_{\lambda g}(g) e_{\lambda g}^{(rs)}$,

with smooth functions
$$c_{pq}$$
 on G . Rewriting the condition $\mathcal{D}_{\lambda,1_N}f = 0$ in terms of c_{pq} 's, we obtain

the following system of differential equations: (7.1) $(2L_{1} - 2s + p + q - 2)c_{1} = 0$

(7.1)
$$(2L_1 - 23 + p + q - 2)c_{p,q+2} = 0$$

(7.2) $\sqrt{s-q} (2L_2 + p + 3q)c_{p,q} +$

(7.3)
$$2\sqrt{(r+2-p)(r+p)(s+2+q)} c_{p-2,q+2} = 0,$$

$$-\sqrt{s+2+q} (p+3q+6-2L_2) c_{p-2,q+2} = 0,$$

$$+2\sqrt{(r-p)(r+2+p)(s-q)}c_{p,q+2} = 0,$$

(7.4) $(2s + p + q + 4 - 2L_1)c_{pq} = 0,$ for p = -r, -r + 2, ..., r and q = -s, -s + 2,..., s - 2. Here $L_1 = L_{E_{01}+E_{0,-1}}$ and $L_2 = L_{E_{21}+E_{-2,-1}}$

Since c_{pq} 's are determined by their values on A, we consider the equations for c_{pq} 's such as (7.1)-(7.4) only on A, though c_{pq} 's are functions on G. By (7.1) and (7.4), we have $(p + q)c_{pq} = 0$ if $q \neq \pm s$. So $c_{pq} = 0$ if $q \neq \pm s$ and $p + q \neq 0$. For c_{pq} 's with $q = \pm s$, (7.2) and (7.3) and the previous fact show that $c_{ps} = 0$ if $p \neq r$ and that $c_{p,-s} = 0$ if $p \neq -r$.

To determine the form of the function c_{pq} , define smooth functions \tilde{c}_{pq} on \boldsymbol{R}^2 by

$$\tilde{c}_{pq}(x_1, x_2) = c_{pq}(\exp(x_1(E_{01} + E_{0,-1}) + x_2(E_{21} + E_{-2,-1}))),$$

for real numbers x_1, x_2 . Then the equations (7.1)-

(7.4) give a system of partial differential equations for \tilde{c}_{pq} 's. For instance, we can find the following equations for $\tilde{c}_{p,-p}$'s.

$$(7.5) \qquad -\left(\frac{\partial}{\partial x_{1}}+s+2\right)\tilde{c}_{p,-p}=0,$$

$$(7.6) \qquad -\sqrt{s+p}\left(\frac{\partial}{\partial x_{2}}+p\right)\tilde{c}_{p,-p}$$

$$+\sqrt{(r+2-p)(r+p)(s+2-p)}\ \tilde{c}_{p-2,-(p-2)}=0,$$

$$(7.7) \qquad \sqrt{s-p}\left(-\frac{\partial}{\partial x_{2}}+p\right)\tilde{c}_{p,-p}$$

$$+\sqrt{(r+2+p)(r+2+p)(r+2+p)}\ \tilde{c}_{p,-p}=0,$$

 $+\sqrt{(r-p)(r+2+p)(s+2+p)} \tilde{c}_{p+2,-(p+2)} = 0.$ These three equations tell that $\tilde{c}_{p,-p}(x_1, x_2) = a_p \exp(-(s+2)x_1 + rx_2)$ for a scalar constant a_p . In a similar way, c_{rs} and $c_{-r,-s}$ are determined up to scalar multiples. By using (7.6) and (7.7) again, we have the following inductive relation for constants a_p 's,

$$a_{p-2} = \sqrt{\frac{(s+p)(r+p)}{(s+2-p)(r+2-p)}} a_p,$$

for p = -r + 2, ..., r. This implies that $a_p = \alpha_p a_r$ with

 $\alpha_p =$

$$\sqrt{\frac{2r(2r-2)\cdots(r+p+2)\cdot(s+r)(s+r-2)\cdots(s+p+2)}{(r-p)(r-p-2)\cdots2\cdot(s-p)(s-p-2)\cdots(s-r+2)}}.$$

Define linear forms μ_1 , μ_2 on a through

$$\mu_{1}(E_{01} + E_{0,-1}) = -(s+2),$$

$$\mu_{1}(E_{21} + E_{-2,-1}) = r,$$

$$^{*}\mu_{2}(E_{01} + E_{0,-1}) = -(s-r+4)/2,$$

$$\mu_{2}(E_{21} + E_{-2,-1}) = -(r+3s)/2.$$

Argue as above for c_{rs} and $c_{-r,-s}$, we see that Ker $\mathcal{D}_{\lambda,1_N}$ is contained in the linear span of the following three functions $f_*(*=0, +, -)$.

$$f_{0}(a) = \sum_{p} \alpha_{p} a^{\mu_{1}} e^{(rs)}_{p,-p},$$

$$f_{+}(a) = a^{\mu_{2}} (e^{(rs)}_{rs} + e^{(rs)}_{-r,-s}),$$

$$f_{-}(a) = a^{\mu_{2}} (e^{(rs)}_{rs} - e^{(rs)}_{-r,-s}),$$

for $a \in A$, where $a^{\mu} = \exp(\mu(\log a))$, and extend these f_* 's to G through $f_*(kan) = \tau_{\lambda}(k)$ $f_*(a)$ for $k \in K$, $a \in A$, $n \in N$. It is easily seen that these f_* 's actually form a basis of Ker $\mathscr{D}_{\lambda,1_N}$.

To see the *MA*-module structure of Ker $\mathcal{D}_{\lambda,1_N}$, we decompose it into irreducibles by seeking its suitable basis. In case J = I, the subspace Cf_* for each of the above three f_* 's is an *MA*-invariant subspace of Ker $\mathcal{D}_{\lambda,1_N}$ and as *MA*-modules

$$Cf_{0} \simeq (\sigma_{(-1)^{r}, (-1)^{(r+s)/2}}) \otimes e^{\mu_{1}}, Cf_{+} \simeq (\sigma_{(-1)^{(s-r)/2}, 1}) \otimes e^{\mu_{2}}, Cf_{-} \simeq (\sigma_{(-1)^{(s-r)/2}, -1}) \otimes e^{\mu_{2}}.$$

Applying Theorem 1 to this result for the MA-module structure of Ker $\mathcal{D}_{\lambda,1_N}$ and rewriting the parameters, we can specialize parameters ε_1 , ε_2 and μ satisfying

Hom_(g,K) $(\pi^*_{\lambda}, \operatorname{Ind}_P^G(\sigma_{\varepsilon_1 \varepsilon_2} \otimes e^{\mu} \otimes 1_N)) \neq (0)$, for discrete series π_A whose Blattner parameter is far from the walls. Keeping in mind the fact that each discrete series representation of G is self-contragredient and calculating $s \cdot \tilde{A}$ for each s in the Weyl group of Ψ , we can varify the assertion in the theorem if the Blattner parameter of π_A is far from the walls.

To get rid of the restriction that λ is far from the walls, Zuckerman's translation functors can be used. See [5, Corollary 5.5] and [2, Theorem B.1].

For the case J = II or J = III, by similar but more complicated computations, we can derive the statement in the theorem.

The details of this paper will appear elsewhere [4].

References

- [1] Harish-Chandra: Discrete series for semisimple Lie groups, II. Acta Math., **116**, 1-111 (1966).
- [2] A. W. Knapp and G. J. Zuckerman: Classification of irreducible tempered representations of semisimple groups. Ann. of Math., 116, 389-501 (1982).
- [3] H. Yamashita: Embeddings of discrete series into induced representations of semisimple Lie groups.
 I. Japan. J. Math., 16, 31-95 (1990).
- [4] T. Yoshinaga and H. Yamashita: The embeddings of discrete series into principal series for an exceptional real simple Lie group of type G_2 , to appear in J. Math. Kyoto Univ.
- [5] G. J. Zuckerman: Tensor product of finite and infinite dimensional representations of semisimple Lie groups. Ann. of Math., 106, 295-308 (1977).