The Embeddings of Discrete Series into Principal Series for an Exceptional Real Simple Lie Group of Type G_{2}

By Tetsumi Yoshinaga*) and Hiroshi Yamashita**)

(Communicated by Kiyosi ITÔ, M. J. A. , April 12, 1996)

Let $G_{\boldsymbol{C}}$ be a connected, simply connected, complex simple Lie group of type G_{2}, G its normal real form, and K a maximal compact subgroup of G. In this paper, we give a complete description of the embeddings of discrete series representations of G into principal series. The result is Theorem 2 in $\S 6$

1. Structures of G and its Lie algebra. Let G, K be as above, g_{0} (resp. \mathfrak{f}_{0}) the Lie algebra of G (resp. K), $\mathfrak{g}_{0}=\mathfrak{f}_{0} \oplus \mathfrak{p}_{0}$ a Cartan decomposition of \mathfrak{g}_{0}. Denote by \mathfrak{g} (resp. $\mathfrak{f}, \mathfrak{p}$) the complexification of $\mathfrak{g}_{0}\left(\right.$ resp. $\left.\mathfrak{f}_{0}, \mathfrak{p}_{0}\right)$. We take a compact Cartan subalgebra t_{0} of g_{0} and denote the root system of g relative to $\mathrm{t}\left(=\mathrm{t}_{0} \otimes \boldsymbol{C}\right)$ by Δ. Let Δ_{c} (resp. $\left.\Delta_{n}\right)$ be the set of compact (resp. noncompact) roots and α_{1} (resp. α_{2}) a short (resp. long) simple root in Δ. We may assume that α_{1} is compact, that α_{2} is noncompact and that $\Delta_{c}^{+}=\left\{\alpha_{1}, 3 \alpha_{1}+2 \alpha_{2}\right\}$. We can take root vectors $E_{i j}$ in the root subspace for the root $i \alpha_{1}+j \alpha_{2} \in \Delta$ in the following way:

$$
\begin{array}{ll}
B\left(E_{i j}, E_{-i,-j}\right)=2 /\left|\alpha_{1}+j \alpha_{2}\right|^{2}, & E_{-i,-j}=-E_{i j}, \\
{\left[E_{10}, E_{01}\right]=E_{11},} & {\left[E_{10}, E_{11}\right]=2 E_{21},} \\
{\left[E_{10}, E_{21}\right]=3 E_{31},} & {\left[E_{32}, E_{-3,-1}\right]=E_{-01},}
\end{array}
$$

where $B(\cdot, \cdot)$ is the Killing form of g and \bar{X} is the complex conjugate of X relative to the compact real form $\mathfrak{f}_{0} \oplus \sqrt{-1} \mathfrak{p}_{0}$ of g. Set $H_{i j}=\left[E_{i j}\right.$, $\left.E_{-i,-j}\right]$. Equip g with the inner product (\cdot, \cdot) defined by $(X, Y)=-B(X, \bar{Y})$. Define a subspace \mathfrak{a}_{0} of \mathfrak{g}_{0} as $\mathfrak{a}_{0}=\boldsymbol{R}\left(E_{01}+E_{0,-1}\right)+\boldsymbol{R}\left(E_{21}\right.$ $+E_{-2,-1}$), then \mathfrak{a}_{0} is a maximal abelian subspace of \mathfrak{p}_{0}, and equip \mathfrak{a}_{0}^{*} with the lexicographic order relative to the ordered basis ($E_{01}+E_{0,-1}, E_{21}+$ $E_{-2,-1}$) of \mathfrak{a}_{0}. Let Ψ be the system of restricted roots of g_{0} with respect to \mathfrak{a}_{0} and Ψ^{+}a positive system of Ψ. Then we have an Iwasawa decomposition $\mathfrak{g}_{0}=\mathfrak{f}_{0} \oplus \mathfrak{a}_{0} \oplus \mathfrak{n}_{0}$ (resp. $G=K A N$) of \mathfrak{g}_{0} (resp. G). We see that $\mathfrak{f}_{0} \simeq \mathfrak{B u}(2) \oplus \mathfrak{B u}(2)$ and $\mathfrak{f}=\mathfrak{B l}(2, \boldsymbol{C}) \oplus \mathfrak{z l}(2, \boldsymbol{C})$. The root system Δ_{c} is of type $A_{1} \oplus A_{1}$, and direct computations give
*) Department of Mathematics, Kyoto University.
**) Department of Mathematics, Hokkaido University.
that $K \simeq(S U(2) \times S U(2)) / D$ with $D=\{1$, $\left.\left(-1_{2},-1_{2}\right)\right\}$, where 1_{2} is the unit matrix of degree 2.

Let M be the centralizer of A in K, then $M=\left\{1, m_{1}, m_{2}, m_{1} m_{2}\right\}$ with

$$
\begin{aligned}
& m_{1}=\left(\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right),\left(\begin{array}{cc}
-\sqrt{-1} & 0 \\
0 & \sqrt{-1}
\end{array}\right)\right)^{\ddagger}, \\
& m_{2}=\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right)^{\ddagger},
\end{aligned}
$$

where g^{\ddagger} is the image of $g \in S U(2) \times S U(2)$ under the covering homomorphism of $S U(2) \times$ $S U(2)$ onto K. Define a unitary character $\sigma_{\varepsilon_{1}, \varepsilon_{2}}$ of M through $\sigma_{\varepsilon_{1}, \varepsilon_{2}}\left(m_{j}\right)=\varepsilon_{j}$ for $j=1,2$, then $\bar{M}=$ $\left\{\sigma_{\varepsilon_{1}, \varepsilon_{2}} \mid \varepsilon_{j}= \pm 1(j=1,2)\right\}$. For each $\mu \in \mathfrak{a}^{*}=$ $\mathfrak{a}_{0}^{*} \otimes \boldsymbol{C}$ gives an one-dimensional representation e^{μ} of the vector group $A=\exp \mathfrak{a}_{0}$. Put $P=$ $M A N$ and we consider the principal series $\operatorname{Ind}_{P}^{G}\left(\sigma_{\varepsilon_{1}, \varepsilon_{2}} \otimes e^{\mu} \otimes 1_{N}\right)$, of G induced from the minimal parabolic subgroup P.
2. Irreducible K-modules. Let X, Y, H be elements in $\mathcal{B l}(2, C)$ with $[H, X]=2 X,[H, Y]$ $=-2 Y,[X, Y]=H$. The $(d+1)$-dimensional irreducible $\boldsymbol{z l}(2, \boldsymbol{C})$-module is denoted by V_{d}. Take a basis $\left\{e_{p}^{(d)} \mid p=-d,-d+2, \ldots, d\right\}$ of V_{d} satisfying the relation

$$
\left\{\begin{array}{l}
H \cdot e_{p}^{(d)}=p e_{e^{(d)}}^{(d)} \\
X \cdot e_{p}^{(d)}=x_{p}^{(d)} e_{p+2}^{(d)} \\
Y \cdot e_{p}^{(d)}=x_{p-2}^{(d)} e_{p-2}^{(d)}
\end{array} \quad(p=-d,-d+2, \ldots, d) .\right.
$$

Here, $x_{p}^{(d)}=\frac{1}{2} \sqrt{(d-p)(d+p+2)}$. We regard $e_{p}^{(d)}$ as 0 if $p \notin\{-d,-d+2, \ldots, d\}$. For a Δ_{c}^{+}-dominant, integral linear form λ on t , put nonnegative integers r, s as $r=\lambda\left(H_{10}\right), s=$ $\lambda\left(H_{32}\right)$. The finite-dimensional irreducible representation of K with highest weight λ is denoted by $\left(\tau_{\lambda}, V_{\lambda}\right)$. Then $V_{\lambda} \simeq V_{r} \otimes V_{s}$. Here \otimes means an exterior tensor product. So we identify these two modules and take a basis $\left\{e_{p q}^{(r s)}\right\}$ of $V_{r} \otimes V_{s}$. Here $e_{p q}^{(r s)}=e_{p}^{(r)} \otimes e_{q}^{(s)}$. Note that $\mathfrak{p} \simeq V_{3} \otimes V_{1}$ as K-modules.
3. Gradient type differential operators. The K-module $V_{\lambda} \otimes \mathfrak{p}$ decomposes as $V_{\lambda} \otimes \mathfrak{p} \simeq$ $\bigoplus_{\beta \in \Delta_{n}} m(\beta) \cdot V_{\lambda+\beta}$, with multiplicity $m(\beta)=0,1$ for $\beta \in \Delta_{n}$. Take a positive system Δ^{+}of Δ containing Δ_{c}^{+}, and put $V^{-}=\bigoplus_{\beta \in \Delta_{n}^{+}} m(-\beta) \cdot V_{\lambda-\beta}$, where $\Delta_{n}^{+}=\Delta^{+} \cap \Delta_{n}$ is the set of positive noncompact roots. Let P_{λ} be the orthogonal projection of $V_{\lambda} \otimes \mathfrak{p}$ onto V^{-}. For a representation (τ, V) of K, define two function spaces $C_{\tau}^{\infty}(G)$ and $C_{\tau}^{\infty}\left(G ; 1_{N}\right)$ as

$$
\begin{gathered}
C_{\tau}^{\infty}(G)= \\
\\
\left(\forall f: G \xrightarrow{c^{\infty}} V \mid f(k g)=\tau(k) f(g)\right. \\
C_{\tau}^{\infty}\left(G ; 1_{N}\right)=\left\{f: G \xrightarrow{c^{\infty}} V \mid f(k g n)=\tau(k) f(g)\right. \\
(\forall(k, g, n) \in K \times G \times N)\} .
\end{gathered}
$$

We define a gradient-type differential operator \mathscr{D}_{λ} on $C_{\tau_{\lambda}}^{\infty}(G)$ by

$$
\begin{aligned}
& (\nabla f)(g)=\sum_{j} L_{X_{j}} f(g) \otimes \bar{X}_{j} \\
& \left(\mathscr{D}_{\lambda} f\right)(g)=P_{\lambda}(\nabla f(g))
\end{aligned}
$$

where L_{X} is the differentiation with respect to the right invariant vector field on G defined by an element X in g and $\left\{X_{j}\right\}$ is an orthonormal basis of \mathfrak{p} relative to the inner product (\cdot, \cdot). Put $\mathscr{D}_{\lambda, 1_{N}}=\left.\mathscr{D}_{\lambda}\right|_{C_{\tau_{\lambda}}^{\infty}\left(G ; 1_{N}\right)}$.
4. Parametrization of discrete series of G. Let Ξ_{c} be the totality of Δ_{c}^{+}-dominant,regular, integral linear forms Λ on t . For each $\Lambda \in \Xi_{c}, \Delta^{+}$ denotes the positive system of Δ for which Λ is Δ^{+}-dominant. By Harish-Chandra [1, Theorem 16], discrete series representations of G is parametrized by Ξ_{c} and we denote the discrete series of G with Harish-Chandra parameter Λ by π_{Λ}. Let $\Delta_{J}^{+}(J=I, I I, I I I)$ be positive systems of Δ with simple roots listed below:

J	I	$I I$	$I I I$
simple roots	α_{1}, α_{2}	$\alpha_{1}+\alpha_{2},-\alpha_{2}$	$-\alpha_{1}-\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}$

For a discrete series π_{Λ} of G, the corresponding positive system $\Delta^{+}=\{\alpha \in \Delta \mid(\alpha, \Lambda)$ $>0\} \subset \Delta$ is one of the above Δ_{J}^{+}s. Define three subsets $\Xi_{J}(J=I, I I, I I I)$ of Ξ_{c} by $\Xi_{J}=$ $\left\{\Lambda \in \Xi_{c} \mid \Delta^{+}=\Delta_{J}^{+}\right\}$. Put $\rho_{c}=\frac{1}{2} \sum_{\alpha \in \Delta_{c}^{+}} \alpha, \rho_{n}=\frac{1}{2}$ $\sum_{\alpha \in \Delta_{n}^{+}} \alpha$ and $\lambda=\Lambda-\rho_{c}+\rho_{n}$. The discrete series π_{Λ} has the lowest K-type τ_{λ} and λ is called the Blattner parameter of π_{Λ}.
5. Method for the determination of embeddings. Take a discrete series π_{Λ} of G and set Δ^{+}as above. The Blattner parameter λ of π_{Λ} is
said to be far from the walls if $\lambda-\sum_{\beta \in Q} \beta$ is Δ_{c}^{+}-dominant for any subset Q of Δ_{n}^{+}. For an irreducible representation $\xi=\sigma \otimes e^{\mu}$ with $\sigma \in$ \hat{M} and $\mu \in \mathfrak{a}^{*}$, put $\tilde{\xi}=\sigma \otimes e^{\mu+\rho_{P}}$. Here $\rho_{P} \in \mathfrak{a}_{0}^{*}$ is defined by $\rho_{P}(H)=\left.\frac{1}{2} \operatorname{tr} \operatorname{ad}(H)\right|_{n_{0}}$ for $H \in a_{0}$. It is easily seen that $M A$ acts on $\operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}$ by right translation. The determination of the embeddings of discrete series into principal series as (g, K)-modules is based on the following theorem proved for gengeral semisimple Lie groups with finite center.

Theorem 1 (cf. [3, Theorem 3.5]). If the Blattner parameter λ of π_{Λ} is far from the walls, then
$\operatorname{Hom}_{(\mathrm{g}, \mathrm{K})}\left(\pi_{\Lambda}^{*}, \operatorname{Ind}_{P}^{G}\left(\xi \otimes 1_{N}\right)\right) \simeq \operatorname{Hom}_{(\mathrm{a}, M)}\left(\tilde{\xi}^{*}, \operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}\right)$, as linear spaces. Here π_{Λ}^{*} denotes the discrete series of G contragredient to π_{Λ}.
6. Complete descrition of embeddings. Define an automorphism u of g by

$$
\begin{gathered}
u=\left(\exp \frac{\pi}{4} \operatorname{ad}\left(E_{01}-E_{0,-1}\right)\right) \\
\cdot\left(\exp \frac{\pi}{4} \operatorname{ad}\left(E_{21}-E_{-2,-1}\right)\right)
\end{gathered}
$$

Note that u maps t onto a. For $\Lambda \in \Xi_{I}$, let $\Lambda_{J}(J=I, I I, I I I)$ be the unique element in Δ_{J}^{+} $\cap W \cdot \Lambda$, where W is the Weyl group of Δ. Further let $\tilde{\Lambda}$ be the Ψ^{+}-dominant element in a^{*} conjugate to $\Lambda \cdot u^{-1}$ under the action of the Weyl group $W(\Psi)$ of Ψ. Define discrete series representations $\pi_{J}(J=I, I I I I I)$ by $\pi_{J}=\pi_{\Lambda_{J}}$. Then these three π_{J} 's are the mutually inequivalent discrete series with the same infinitesimal character Λ. Put $\lambda_{j}, j=1,2$, as $\lambda_{1} \circ u=-\left(2 \alpha_{1}+\alpha_{2}\right)$ and $\lambda_{2}{ }^{\circ} u=3 \alpha_{1}+\alpha_{2}$, then these λ_{j} 's are simple roots of Ψ^{+}. The reflection relative to λ_{j} is denoted by s_{j}. The following theorem describes the embeddings of discrete series of G into its principal series.

Theorem 2. For $\Lambda \in \Xi_{I}, J=I, I I, I I I$, $\sigma_{\varepsilon_{1}, \varepsilon_{2}} \in \hat{M}, \mu \in \mathfrak{a}^{*}$,
$\operatorname{dim}_{\varepsilon_{1}, \varepsilon_{2}} \operatorname{Hom}_{(g, K)}\left(\pi_{J}, \operatorname{Ind}_{P}^{G}\left(\sigma_{\varepsilon_{1,}, \varepsilon_{2}} \otimes e^{\mu} \otimes 1_{N}\right)\right) \leq 1$, and the equality holds if and only if $\mu=s \cdot \tilde{\Lambda}$ and $\left(\varepsilon_{1}, \varepsilon_{2}\right) \in S_{\Lambda}(J, s)$ with an $s \in W(J)$, where $W(J)$ and $S_{\Lambda}(J, s)$ are subsets of $W(\Psi)$ and $\{ \pm 1\} \times\{ \pm 1\}$ defined respectively as follows:
$W(I)=\left\{s_{1}, s_{2} s_{1}\right\}$,
$W(I I)=\left\{1, s_{1}, s_{2}, s_{1} s_{2}, s_{2} s_{1}\right\}$,
$W(I I I)=\left\{s_{2}, s_{1} s_{2}\right\}$,
and

Here $r^{\prime}=\Lambda\left(H_{10}\right)$ and $s^{\prime}=\Lambda\left(H_{32}\right)$.
7. Sketch of the proof of Theorem 2. Here we illustrate the outline of the proof in case $J=$ I, where $r=\lambda\left(H_{10}\right)$ and $s=\lambda\left(H_{32}\right)$ are nonnegative integers so that $s-r$ is even and is not less than 4. Let f be a function in $C_{\tau_{\lambda}}^{\infty}\left(G ; 1_{N}\right)$, then f can be expressed uniquely in the form

$$
f(g)=\sum_{p, q} c_{p q}(g) e_{p q}^{(i s)},
$$

with smooth functions $c_{p q}$ on G. Rewriting the condition $\mathscr{D}_{\lambda, 1_{N}} f=0$ in terms of $c_{p q}$'s, we obtain the following system of differential equations:
(7.1) $\left(2 L_{1}-2 s+p+q-2\right) c_{p, q+2}=0$,

$$
\begin{gather*}
\sqrt{s-q}\left(2 L_{2}+p+3 q\right) c_{p q}+ \tag{7.2}\\
2 \sqrt{(r+2-p)(r+p)(s+2+q)} c_{p-2, q+2}=0,
\end{gather*}
$$

$$
\begin{equation*}
) \quad-\sqrt{s+2+q}\left(p+3 q+6-2 L_{2}\right) c_{p, q+2} \tag{7.3}
\end{equation*}
$$

$$
+2 \sqrt{(r-p)(r+2+p)(s-q)} c_{p+2, q}=0
$$

$$
\begin{equation*}
\left(2 s+p+q+4-2 L_{1}\right) c_{p q}=0 \tag{7.4}
\end{equation*}
$$

for $p=-r,-r+2, \ldots, r$ and $q=-s,-s+2$, $\ldots, s-2$. Here $L_{1}=L_{E_{01}+E_{0,-1}}$ and $L_{2}=L_{E_{21}+E_{-2,-1}}$.

Since $c_{p q}$'s are determined by their values on A, we consider the equations for $c_{p q}$'s such as (7.1)(7.4) only on A, though $c_{p q}$'s are functions on G. By (7.1) and (7.4), we have $(p+q) c_{p q}=0$ if $q \neq \pm s$. So $c_{p q}=0$ if $q \neq \pm s$ and $p+q \neq 0$. For $c_{p q}$'s with $q= \pm s,(7.2)$ and (7.3) and the previous fact show that $c_{p s}=0$ if $p \neq r$ and that $c_{p,-s}=0$ if $p \neq-r$.

To determine the form of the function $c_{p q}$, define smooth functions $\tilde{c}_{p q}$ on \boldsymbol{R}^{2} by

$$
\begin{gathered}
\tilde{c}_{p q}\left(x_{1}, x_{2}\right)=c_{p q}\left(\operatorname { e x p } \left(x_{1}\left(E_{01}+E_{0,-1}\right)\right.\right. \\
\left.\left.+x_{2}\left(E_{21}+E_{-2,-1}\right)\right)\right),
\end{gathered}
$$

for real numbers x_{1}, x_{2}. Then the equations (7.1)-

$$
\begin{aligned}
& S_{\Lambda}(I I, 1)=\left\{\left((-1)^{\frac{1}{2}\left(r^{\prime}+s^{\prime}\right)},(-1)^{\frac{1}{2}\left(r^{\prime}-s^{\prime}+2\right)}\right)\right. \text {, } \\
& \left.\left((-1)^{\frac{1}{2}\left(r^{\prime}+s^{\prime}+2\right)}, \pm 1\right)\right\}, \\
& S_{\Lambda}\left(J, s_{1}\right)=\left\{\begin{array}{l}
\left\{\left((-1)^{r^{\prime}+1},(-1)^{\frac{1}{2}\left(r^{\prime}+s^{\prime}\right)}\right)\right\} \\
\left\{\left((-1)^{\frac{1}{2}\left(r^{\prime}+s^{\prime}\right)},(-1)^{r^{\prime}+1} J=I\right.\right. \\
\left.\left((-1)^{\frac{1}{2}\left(r^{\prime}+s^{\prime}+2\right)}, \pm 1\right)\right\} \\
\text { for } J=I I,
\end{array}\right. \\
& S_{\Lambda}\left(J, s_{2}\right)=\left\{\begin{array}{l}
\left\{\left((-1)^{r^{\prime}},(-1)^{\frac{1}{2}\left(r^{\prime}-s^{\prime}+2\right)}\right),\right. \\
\left.\left((-1)^{r^{\prime}+1}, \pm 1\right)\right\} \quad \text { for } J=I I \\
\left\{\left((-1)^{\frac{1}{2}\left(r^{\prime}-s^{\prime}\right)},(-1)^{r^{\prime}+1}\right),\right. \\
\left.\left((-1)^{\frac{1}{2}\left(r^{\prime}-s^{\prime}+2\right)},(-1)^{r^{\prime}}\right)\right\} \\
\text { for } J=I I I,
\end{array}\right. \\
& S_{\Lambda}\left(J, s_{1} s_{2}\right)=\left\{\left(\pm 1,(-1)^{\frac{1}{2}\left(r^{\prime}+s^{\prime}+2\right)}\right)\right\} \\
& \text { for } J=I I, I I I \text {, } \\
& S_{\Lambda}\left(J, s_{2} s_{1}\right)=\left\{\left((-1)^{\frac{1}{2}\left(r^{\prime}-s^{\prime}+2\right)}, \pm 1\right)\right\} \\
& \text { for } J=I, I I \text {. }
\end{aligned}
$$

(7.4) give a system of partial differential equations for $\tilde{c}_{p q}$'s. For instance, we can find the following equations for $\tilde{c}_{p,-p}$'s.

$$
\begin{array}{ll}
(7.5) & -\left(\frac{\partial}{\partial x_{1}}+s+2\right) \tilde{c}_{p,-p}=0 \\
(7.6) & -\sqrt{s+p}\left(\frac{\partial}{\partial x_{2}}+p\right) \tilde{c}_{p,-p} \tag{7.6}\\
+\sqrt{(r+2-p)(r+p)(s+2-p)} \tilde{c}_{p-2,-(p-2)}=0,
\end{array}
$$

$$
\begin{equation*}
\sqrt{s-p}\left(-\frac{\partial}{\partial x_{2}}+p\right) \tilde{c}_{p,-p} \tag{7.7}
\end{equation*}
$$

$$
+\sqrt{(r-p)(r+2+p)(s+2+p)} \tilde{c}_{p+2,-(p+2)}=0
$$

These three equations tell that $\tilde{c}_{p,-p}\left(x_{1}, x_{2}\right)=a_{p}$ $\exp \left(-(s+2) x_{1}+r x_{2}\right)$ for a scalar constant a_{p}. In a similar way, $c_{r s}$ and $c_{-r,-s}$ are determined up to scalar multiples. By using (7.6) and (7.7) again, we have the following inductive relation for constants a_{p} 's,

$$
a_{p-2}=\sqrt{\frac{(s+p)(r+p)}{(s+2-p)(r+2-p)}} a_{p}
$$

for $p=-r+2, \ldots, r$. This implies that $a_{p}=\alpha_{p} a_{r}$ with

$$
\alpha_{p}=
$$

$$
\sqrt{\frac{2 r(2 r-2) \cdots(r+p+2) \cdot(s+r)(s+r-2) \cdots(s+p+2)}{(r-p)(r-p-2) \cdots 2 \cdot(s-p)(s-p-2) \cdots(s-r+2)}} .
$$

Define linear forms μ_{1}, μ_{2} on \mathfrak{a} through

$$
\begin{aligned}
& \mu_{1}\left(E_{01}+E_{0,-1}\right)=-(s+2), \\
& \mu_{1}\left(E_{21}+E_{-2,-1}\right)=r, \\
& \mu_{2}\left(E_{01}+E_{0,-1}\right)=-(s-r+4) / 2, \\
& \mu_{2}\left(E_{21}+E_{-2,-1}\right)=-(r+3 s) / 2
\end{aligned}
$$

Argue as above for $c_{r s}$ and $c_{-r,-s}$, we see that Ker $\mathscr{D}_{\lambda, 1_{N}}$ is contained in the linear span of the following three functions $f_{*}(*=0,+,-)$.

$$
\begin{aligned}
& f_{0}(a)=\sum_{p} \alpha_{p} a^{\mu_{1}} e_{p,-p}^{(r s)}, \\
& f_{+}(a)=a^{\mu_{2}}\left(e_{r s}^{(r s)}+e^{(r s)}\right), \\
& f_{-}(a)=a^{\mu_{2}}\left(e_{r s}^{(r s)}-e_{-r,-s}^{\left(r r_{s}-s\right.}\right),
\end{aligned}
$$

for $a \in A$, where $a^{\mu}=\exp (\mu(\log a)$), and extend these f_{*} 's to G through $f_{*}($ kan $)=\tau_{\lambda}(k)$ $f_{*}(a)$ for $k \in K, a \in A, n \in N$. It is easily seen that these f_{*} 's actually form a basis of Ker $\mathscr{D}_{\lambda, 1_{N}}$.

To see the $M A$-module structure of Ker $\mathscr{D}_{\lambda, 1_{N}}$, we decompose it into irreducibles by seeking its suitable basis. In case $J=I$, the subspace $\boldsymbol{C} f_{*}$ for each of the above three f_{*} 's is an $M A-$ invariant subspace of $\operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}$ and as MAmodules

$$
\begin{aligned}
& \boldsymbol{C} f_{0} \simeq\left(\sigma_{(-1)^{r},(-1)^{(r+s) / 2)}}\right) \otimes e^{\mu_{1}}, \\
& \boldsymbol{C} f_{+} \simeq\left(\sigma_{(-1)}^{(s-r) / 2,1}\right) \otimes e^{\mu_{2}}, \\
& \boldsymbol{C} f_{-} \simeq\left(\sigma_{(-1))^{(s-r) / 2},-1}\right) \otimes e^{\mu_{2}} .
\end{aligned}
$$

Applying Theorem 1 to this result for the $M A$-module structure of $\operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}$ and rewriting the parameters, we can specialize parameters ε_{1}, ε_{2} and μ satisfying
$\operatorname{Hom}_{(g, K)}\left(\pi_{\lambda}^{*}, \operatorname{Ind}_{P}^{G}\left(\sigma_{\varepsilon_{1} \varepsilon_{2}} \otimes e^{\mu} \otimes 1_{N}\right)\right) \neq(0)$, for discrete series π_{A} whose Blattner parameter is far from the walls. Keeping in mind the fact that each discrete series representation of G is self-contragredient and calculating $s \cdot \tilde{\Lambda}$ for each s in the Weyl group of Ψ, we can varify the assertion in the theorem if the Blattner parameter of π_{Λ} is far from the walls.

To get rid of the restriction that λ is far from the walls, Zuckerman's translation functors can be used. See [5, Corollary 5.5] and [2, Theorem B.1].

For the case $J=I I$ or $J=I I I$, by similar but more complicated computations, we can derive the statement in the theorem.

The details of this paper will appear elsewhere [4].

References

[1] Harish-Chandra: Discrete series for semisimple Lie groups, II. Acta Math., 116, 1-111 (1966).
[2] A. W. Knapp and G. J. Zuckerman: Classification of irreducible tempered representations of semisimple groups. Ann. of Math., 116, 389-501 (1982).
[3] H. Yamashita: Embeddings of discrete series into induced representations of semisimple Lie groups. I. Japan. J. Math., 16, 31-95 (1990).
[4] T. Yoshinaga and H. Yamashita: The embeddings of discrete series into principal series for an exceptional real simple Lie group of type G_{2}, to appear in J. Math. Kyoto Univ.
[5] G. J. Zuckerman: Tensor product of finite and infinite dimensional representations of semisimple Lie groups. Ann. of Math., 106, 295-308 (1977).

