A Remark on Jeśmanowicz' Conjecture

By Kei TAKAKUWA

Department of Mathematics, Gakushuin University (Communicated by Shokichi IYANAGA, M. J. A., June 11, 1996)

1. Introduction. Let (a, b, c) be a primitive Pythagorean triple such that

(1) $a^2 + b^2 = c^2$, *a*, *b*, $c \in N$, (a, b) = 1, 2 | b. Then we have

(2) $a = r^2 - s^2$, b = 2rs, $c = r^2 + s^2$ where $r, s \in N$, (r, s) = 1, r > s, $r \equiv s + 1 \pmod{2}$.

In [1], L.Jeśmanowicz conjectured that the equation

(3) $a^x + b^y = c^z, x, y, z \in N$

has then the only solution (x, y, z) = (2, 2, 2). This conjecture has been proved to be true in many special cases. In particular, Maohua Le [2] proved the following theorem:

Theorem 1. Let a, b and c be as in (2) with $2 \parallel r, s \equiv 3 \pmod{4}$ and $r \ge 81s$. Then the only solution of (3) is (x, y, z) = (2, 2, 2).

The proof of this theorem in [2] is based on the following lemma:

Lemma ([3, Lemma 2]). Let (x, y, z) be a solution of (3) with $(x, y, z) \neq (2, 2, 2)$. If $2 \parallel r$ and $s \equiv 3 \pmod{4}$, then we have $2 \mid x, y = 1$ and $2 \nmid z$.

In fact, a weaker result $(r \ge 6000 \text{ and } s = 3 \text{ instead of } r \ge 81s)$ had been obtained by Yongdong Guo and Maohua Le in [3] applying the Baker theory; then the above Theorem 1 was proved in [2] with the aid of a stronger result of the same theory.

In this paper, we shall show that the condition $r \ge 81s$ can be eliminated from Theorem 1 for s = 3, 7, 11, 15; i.e. we shall prove the following theorem:

Theorem 2. Let a, b and c be as in (2) with 2 || r, s = 3, 7, 11, and 15. Then the only solution of (3) is (x, y, z) = (2,2,2).

2. Proof. We have to show that the existence of $(x, y, z) \neq (2, 2, 2)$ for (a, b, c) as in (2) with $2 \parallel r$, s = 3, 7, 11, 15 leads to a contradiction. The above Lemma says that in this hypothesis, we should have $2 \mid x, y = 1$ and $2 \nvDash z$. Thus we see that the proof is reduced to that of

the following Propositions 1, 2.

<u>Notation</u> For any integer i prime to a given prime p, let d(i, p) be the order of i modulo p.

Proposition 1. Let $a, b, c \in N$ as in (2) with $2 || r, s \equiv 3 \pmod{4}$ and $x, y, z \in N$ with $2 || x, y = 1, 2 \nmid z$. Then the existence of a prime p satisfying any one of the following eight conditions is a contradiction.

- (i) $a \equiv \pm 1 \pmod{p}$ and $c^i \equiv 1 + b \pmod{p}$ for any $i(1 \le i \le p)$.
- (ii) $c \equiv F(\text{mod. } p)$ and $a^i \equiv F b(\text{mod. } p)$ for any $i(1 \leq i \leq p)$, where $F = \pm 1$.
- (iii) $c \equiv 0 \pmod{p}$ and $a^i \equiv -b \pmod{p}$ for any $i(1 \leq i \leq p)$.
- (iv) $a \equiv 0 \pmod{p}$ and $c^i \equiv b \pmod{p}$ for any $i(1 \leq i \leq p)$.
- (v) $r \equiv 0 \pmod{p}$, $p \equiv 1 \pmod{4}$ and $4 \mid d(s, p)$.
- (vi) $s \equiv 0 \pmod{p}$, $p \equiv 1 \pmod{4}$ and $4 \mid d(r, p)$.
- (vii) $a \equiv \pm 1 \pmod{p}$, $c^m \equiv 1 + b \pmod{p}$ for some $m(1 \leq m \leq p, 2 \mid m)$ and $2 \mid d(c, p)$.
- (viii) $c \equiv F(\text{mod. } p), a^n \equiv F b(\text{mod. } p)$ for some $n(1 \leq n \leq p, 2 \neq n)$ and $2 \mid d(a, p)$, where $F = \pm 1$.

Proposition 2. Let a, b, c, x, y, z be as above, $2 \parallel r, 1 < r < 81s$ and s = 3, 7, 11, 15. Then there does exist a prime p satisfying one of the conditions $(i), \ldots, (viii)$ for each triple (a, b, c).

Proof of Proposition 1. Case (i): From (3), $2 \mid x$ and y = 1, we have

(4) $c^z \equiv 1 + b \pmod{p}$.

From (i), (4) is a contradiction.

Case (ii): From (3), $2 \not\prec z$ and y = 1, we have

(5) $a^x \equiv F - b \pmod{p}$.

From (ii), (5) is a contradiction.

Case (*iii*): From (3) and y = 1, we have

(6) $a^x \equiv -b \pmod{p}$.

From (iii), (6) is a contradiction.

Case (*iv*): From (3) and y = 1, we have

(7) $c^z \equiv b \pmod{p}$.

From (iv), (7) is a contradiction.

Case (v): From (3) and
$$2 \mid x$$
, we have
 $s^{2|x-z|} \equiv 1 \pmod{p}$.

Then we have d(s, p) |2|x-z|. Since 4 |d(s, p), we see that $x \equiv z \pmod{2}$, which is a contradiction.

Case (vi): From (3), we have $r^{2|x-z|} \equiv 1 \pmod{p}$.

Then we have d(r, p) |2|x-z|. Since 4 |d(r, p), we see that $x \equiv z \pmod{2}$, which is a contradiction.

Case (vii): From (4), we have

$$c^{|z-m|} \equiv 1 \pmod{p}.$$

Then we have d(c, p) | z - m. Since $d(c, p) \equiv m \equiv 0 \pmod{2}$, we see that 2 | z, which is a contradiction.

Case (*viii*): From (5), we have
$$a^{|x-n|} \equiv 1 \pmod{p}$$
.

Then we have d(a, p) | x - n. Since $d(a, p) \equiv 0$ and $n \equiv 1 \pmod{2}$, we see that $2 \nvDash x$, which is a contradiction. Q.E.D.

Proof of Proposition 2. We could find primes for each triple (a, b, c) as in (2) with 2 || r, 1 < r < 81s, s = 3, 7, 11 and 15 using computer language system UBASIC86 (The Table below shows some of the results with larger primes).

S	r	a	Ь	С	Þ	Satisfied condition
3	70	4891	420	4909	1223	
	70	4091		4909		
3	142	20155	852	20173	3359	(i)
11	602	362283	13244	362525	181141	<i>(i)</i>
11	842	708843	18524	709085	354421	<i>(i)</i>
15	826	682051	24780	682501	4547	(vii)
7	362	130995	5068	131093	2521	(ii)
15	622	386659	18660	387109	10753	(ii)
7	230	52851	3220	52949	4073	(iii)
7	382	145875	5348	145973	36469	(vii)

Thus the proof of Theorem 2 is completed.

References

- [1] L.Jeśmanowicz: Kilka uwag o liczbach pitagorejwkich (Some remarks on Pythagorean numbers). Wiadom. Mat., (2) 1, 196-202 (1955/1956) (in Polish).
- [2] M.-H. Le: On Jeśmanowicz' conjecture concerning

Pythagorean numbers. Proc. Japan Acad., **72A**, 97-98 (1996).

- [3] Y.-D. Guo and M.-H. Le: A note on Jeśmanowicz' conjecture concerning Pythagorean numbers. Comment. Mat., Univ. St. Pauli, 44, no. 2, 225-228 (1995).
- [4] Y. Kida: UBASIC86 Ver. 8.7h (1995).