A Remark on Jeśmanowicz' Conjecture

By Kei TAKAKUWA
Department of Mathematics, Gakushuin University
(Communicated by Shokichi Iyanaga, M. J. A., June 11, 1996)

1. Introduction. Let (a, b, c) be a primitive Pythagorean triple such that
(1) $a^{2}+b^{2}=c^{2}, a, b, c \in \boldsymbol{N},(a, b)=1,2 \mid b$. Then we have
(2) $\quad a=r^{2}-s^{2}, b=2 r s, c=r^{2}+s^{2}$
where $\quad r, s \in N,(r, s)=1, r>s, r \equiv s+1(\bmod$. 2).

In [1], L.Jeśmanowicz conjectured that the equation
(3)

$$
a^{x}+b^{y}=c^{z}, x, y, z \in \boldsymbol{N}
$$

has then the only solution $(x, y, z)=(2,2,2)$. This conjecture has been proved to be true in many special cases. In particular, Maohua Le [2] proved the following theorem:

Theorem 1. Let a, b and c be as in (2) with $2 \| r, s \equiv 3(\bmod .4)$ and $r \geqq 81 s$. Then the only solution of (3) is $(x, y, z)=(2,2,2)$.

The proof of this theorem in [2] is based on the following lemma:

Lemma ([3, Lemma 2]). Let (x, y, z) be a solution of (3) with $(x, y, z) \neq(2,2,2)$. If $2 \| r$ and $s \equiv 3$ (mod. 4), then we have $2 \mid x, y=1$ and $2 \times z$.

In fact, a weaker result $(r \geqq 6000$ and $s=$ 3 instead of $r \geqq 81 s$) had been obtained by Yongdong Guo and Maohua Le in [3] applying the Baker theory; then the above Theorem 1 was proved in [2] with the aid of a stronger result of the same theory.

In this paper, we shall show that the condition $r \geqq 81 s$ can be eliminated from Theorem 1 for $s=3,7,11,15$; i.e. we shall prove the following theorem:

Theorem 2. Let a, b and c be as in (2) with $2 \| r, s=3,7,11$, and 15. Then the only solution of (3) is $(x, y, z)=(2,2,2)$.
2. Proof. We have to show that the existence of $(x, y, z) \neq(2,2,2)$ for (a, b, c) as in (2) with $2 \| r, s=3,7,11,15$ leads to a contradiction. The above Lemma says that in this hypothesis, we should have $2 \mid x, y=1$ and $2 \not x z$. Thus we see that the proof is reduced to that of
the following Propositions 1, 2.
Notation For any integer i prime to a given prime p, let $d(i, p)$ be the order of i modulo p.

Proposition 1. Let $a, b, c \in \boldsymbol{N}$ as in (2) with $2 \| r, s \equiv 3$ (mod. 4) and $x, y, z \in \boldsymbol{N}$ with $2 \mid x, y=1,2 \times z$. Then the existence of a prime p satisfying any one of the following eight conditions is a contradiction.
(i) $a \equiv \pm 1(\bmod . p)$ and $c^{i} \neq 1+b(\bmod . p)$ for any $i(1 \leqq i \leqq p)$.
(ii) $c \equiv F(\bmod . p) \quad$ and $a^{i} \neq F-b(\bmod . p)$ for any $i(1 \leqq i \leqq p)$, where $F= \pm 1$.
(iii) $c \equiv 0(\bmod . p) \quad$ and $\quad a^{i} \neq-b(\bmod . p)$ for any $i(1 \leqq i \leqq p)$.
(iv) $a \equiv 0(\bmod . p) \quad$ and $c^{i} \neq b(\bmod . p)$ for any $i(1 \leqq i \leqq p)$.
(v) $r \equiv 0(\bmod . p), p \equiv 1(\bmod .4)$ and $4 \mid d(s, p)$.
(vi) $s \equiv 0(\bmod . p), p \equiv 1(\bmod .4)$ and $4 \mid d(r, p)$.
(vii) $a \equiv \pm 1(\bmod . p), c^{m} \equiv 1+b(\bmod . p)$
for some $m(1 \leqq m \leqq p, 2 \mid m)$ and
$2 \mid d(c, p)$.
(viii) $\quad c \equiv F(\bmod . p), a^{n} \equiv F-b(\bmod . p)$
for some $n(1 \leqq n \leqq p, 2 \nmid n)$ and
$2 \mid d(a, p)$, where $F= \pm 1$.
Proposition 2. Let a, b, c, x, y, z be as above, $2 \| r, 1<r<81 s$ and $s=3,7,11,15$. Then there does exist a prime p satisfying one of the conditions (i), ..., (viii) for each triple (a, b, c).

Proof of Proposition 1. Case (i): From (3), $2 \mid x$ and $y=1$, we have
(4) $\quad c^{z} \equiv 1+b$ (mod. p).

From (i), (4) is a contradiction.
Case (ii): From (3), $2 \not x z$ and $y=1$, we have
(5) $\quad a^{x} \equiv F-b(\bmod . p)$.

From (ii), (5) is a contradiction.
Case (iii): From (3) and $y=1$, we have
(6) $\quad a^{x} \equiv-b$ (mod. p.

From (iii), (6) is a contradiction.
Case (iv): From (3) and $y=1$, we have

$$
c^{z} \equiv b(\bmod . p)
$$

From (iv), (7) is a contradiction.
Case (v): From (3) and $2 \mid x$, we have

$$
s^{||x-z|} \equiv 1(\bmod . p)
$$

Then we have $d(s, p)|2| x-z \mid$. Since $4 \mid d(s, p)$, we see that $x \equiv z$ (mod. 2), which is a contradiction.

Case (vi): From (3), we have

$$
r^{|x-z|} \equiv 1(\bmod . p)
$$

Then we have $d(r, p)|2| x-z \mid$. Since $4 \mid d(r, p)$, we see that $x \equiv z$ (mod. 2), which is a contradiction.

Case (vii): From (4), we have

$$
c^{|z-m|} \equiv 1(\bmod . p)
$$

Then we have $d(c, p) \mid z-m$. Since $d(c, p) \equiv m$ $\equiv 0(\bmod .2)$, we see that $2 \mid z$, which is a contradiction.

Case (viii): From (5), we have

$$
a^{|x-n|} \equiv 1(\bmod . p)
$$

Then we have $d(a, p) \mid x-n$. Since $d(a, p) \equiv 0$ and $n \equiv 1(\bmod .2)$, we see that $2 \nmid x$, which is a contradiction.
Q.E.D.

Proof of Proposition 2. We could find primes for each triple (a, b, c) as in (2) with $2 \| r$, $1<r<81 s, s=3,7,11$ and 15 using computer language system UBASIC86 (The Table below shows some of the results with larger primes).

\boldsymbol{s}	\boldsymbol{r}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{p}	Satisfied condition
3	70	4891	420	4909	1223	(i)
3	142	20155	852	20173	3359	(i)
11	602	362283	13244	362525	181141	(i)
11	842	708843	18524	709085	354421	(i)
15	826	682051	24780	682501	4547	$(v i i)$
7	362	130995	5068	131093	2521	$($ ii $)$
15	622	386659	18660	387109	10753	$($ (ii)
7	230	52851	3220	52949	4073	$($ iii $)$
7	382	145875	5348	145973	36469	$(v i i)$

Thus the proof of Theorem 2 is completed.

References

[1] L.Jesmanowicz: Kilka uwag o liczbach pitagorejwkich (Some remarks on Pythagorean numbers). Wiadom. Mat., (2) 1, 196-202 (1955/1956) (in Polish).
[2] M.-H. Le: On Jeśmanowicz' conjecture concerning

Pythagorean numbers. Proc. Japan Acad., 72A, 97-98 (1996).
[3] Y.-D. Guo and M.-H. Le: A note on Jesmanowicz' conjecture concerning Pythagorean numbers. Comment. Mat., Univ. St. Pauli, 44, no. 2, 225228 (1995).
[4] Y. Kida: UBASIC86 Ver. 8.7h (1995).

