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Introduction. In this paper we are going to
show the existence of an infinite set of primes
congruent to 3 modulo 8, such that any product
of primes in this set is a non-congruent number.
The existence of such a sequence implies the ex-

istence of an elementary 2-extension of infinite
degree over which the rank of the elliptic curve
E’y --x --x remains zero. The question about
the existence of such an extension was posed by
Kida in [1] {}3. The proof below is based on a re-

sult of Serf [2] which gives an upper bound for
the rank of the elliptic curve En’Y x nx.

Theorem. Let Pl pt be distinct primes

such that p-= 3 (mod 8) and "(P-) --1 for

j i. Then the product n--P1" "Pt is a non-
congruent number.

Notes"
1) Since p 3 (mod 8),

1,,) 2

3) Let n ’p then

(_

4) Let b be a divisor of , and put
b

b ifpl b,

bifpb.
Let k (j’Plb and j < i} ; then

----(b) (_ 1),.

Proo To show that n is a non-congruent
number we will use Theorem 3.3 and Corollary
3.4 in [2] to see that for all pairs (bl, ba)
{(1,1); (- 1, n); (n, 2); (- n, 2n)} with

b { 2 F1 P?’ e, , t, {0,i}}
there is no solution for the system of equations:

Using the general unsolvability-condition
and the unsolvability-condition mod 2 in [2] {}3,
we are left with bl" b. > 0 and 2 A hi.

Case 1. b2 > 0and2A’b2. Define
r min{i ;p [b or p[ b}

If r exists then

p,,! 1

/
1

If p b and p b then (v(bl), Vr(b))
(1,1) and

(--nrb[ (--1) r-l- (--1)
Pr /

One of the two Jacobi symbols is equal to 1
and therefore there is no solution.

If p b and p b then (v(b), v(b))
(1,0) and

2b 1

and there is no solution.
If b and b then (v(b), v(be))

(0,1) and

b)=-1
and there is no solution.

Therefore f does not exist, which implies
that no prime divides b or b and then (b, b)
(,.
ease . b > 0 and 21b.
Define

If f exists then

/= (- 1)

b 1

If p b and p b then (v(b), v(b))
(0,1) and
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Pr (- 1)r- (- 1)

(--nrb)_ (_ 1)r-l(__ 1)= (--1) r-1

Pr
One of the two Jacobi symbols is equal to --1
and therefore there is no solution.

If Pr bl and Pr b2 then (vpr(bl), vp,.(b2))
(1,1) and

(--nrb) --(--1)r-1( 1) r-l= --1Pr
and there is no solution.

If pr,g bl and PrZ b. then (v(bl), v)(b))
(0,0) and

and there is no solution.
Therefore r does not exist, which implies

that all the primes divide bl and no prime divides

b, so (b, b) (n, 2).
Case 3. b 0 and 2 " b..
Define

r-- min{i’Pl b or p A b.}
If r exists then

b 1
P!
b r-1

pr /
(-- 1) (-- 1)

If pr bl and Pr X ba then (v,(bl), v,(b.))
(1,0) and

(rb) --(--1)r-1( 1)--(--l)Pr

-r (- 1) (-- 1)-
One of the two Jacobi symbols is equal to --1
and therefore there is no solution.

If Pr [bl and Pr b then (Vl)r(bl), v)r(b.))
(1,1) and

(--2nrb)_ (_ 1)r-1(__ 1)r__ 1Pr
and there is no solution.

If p A bl and p A b then (v)(bl), v(b))
(0,0) and

and there is no solution.
Therefore r does not exist, which implies

that no prime divide bl and all primes divides b,.,
so (bl, b) (-- 1, --n).

Case 4. b. < 0 and 21b.
Define

r min{i’pi b or pi A
If r exists then

r-1

Pr/
(- 1) (-- 1)

b.
r--1

Pr!
(-- 1)

If p bl and p 2" bz then (v(bl), vp(bz))
(0,0) and

(b_) (_ 1)r_l

One of the two Jacobi symbols is equal to --1
and therefore there is no solution.

If Pr .,V bl and Pr bz then (Vr(bl), v)r(bz))
(0,1) and

(-- rtrb:) --1b; (- 1)r-1(-- 1)r-1

and there is no solution.
If Pr bi and Pr J( b then (yp(bi), y,,,(b2))

(1,0) and

(nrb- (--1)r-l( 1) r= --1
\

and there is no solution.
Therefore r does not exist, which implies

that all primes divide bl and b so (bl, b.)-
(-n, 2n).

Corollary 1. There exists an infinite sequ-

ence of distinct primes congruent to 3 modulo 8
such that any product of primes in this sequence
is a non-congruent number.

Proof It is enough to show that for every
N there exist Pl,. P,, distinct primes Pi

3 (mod8), such that 1 for j< i. This

is clear by induction using Dirichlet’s theorem on
primes in arithmetic progression.
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