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The purpose of this note is to announce (X, Y) for X, Y L, g G, and that
some results on the upper bounds of the Schur (F(X), F(Y)) (X, Y) for X. Y L. Let
indices of the irreducible characters of the excep- $ L be an opposition automorphism of L
tional finite simple groups of Lie type. defined over Fq. Let p be a fixed complex non-

1. We need to review the construction of trivial additive character of Fq.
the generalized Gelfand-Graev characters of fi- Recall that h (Hr.). Then there is an
nite reductive groups (Kawanaka [10]). F-stable unipotent conjugacy class c of G such

Let K be an algebraically closed field of that c U is dense in U2 and invariant under
characteristic p > 0, and let F be the subfield of the translations by elements of U3. Let u (c N
K with q elements, q being a power of p. Let G U) F. Then we can define a linear character u of
be a connected, reductive algebraic group over K, U.F by
defined over F, and let F" G G be the corres- (x) p(:((u)* (x))) x UF

ponding Frobenius endomorphism of G. Through- u can be extended to a linear character " of a
out the note we shall assume that p is not a bad certain subgroup U1.5F of UIF such that (UF"

prime for G. Let GF
be the group of F-fixed U5F) --(U.F. U.F)([10, pp. 596-597]). We

points of G. now put
Let T be an F-stable maximal torus of G 7"u- Ind,5(e’),

contained in an F-stable Borel subgroup of G. which we call the generalized Gelfand-Graev
Let 2 be the root system of G with respect to T. character of Ge

associated with u. If 7r" (-- G
Let Gc be a complex reductive connected Lie is the simply-connected covering of the derived
group with the same root system as G. Then group of G and H is a subgroup of GF

containing
the nilpotent Ad(GC)-orbits in Lie GC can be pa- the group 7r(e), then we also put

H Hrametrized by a set Hr. of weighted Dynkin dia- ru Inde,.5(’),
grams (Dynkin[3]). Theorem 1. (Kawanaka [11, (2.4.1)(iii)]).

Let L Lie G. We fix h (Hr.) e. For an Assume that G is an exceptional adjoint simple
integer i, set ](i) {r ] h(r) i} and algebraic group defined over Fo (p being good for
22 (- i) {r 22 h(r)

_
i}. For

_
1, set G). Then, for any irreducible character 7. of G,

L(i) Ur, where Ur’S are the root sub- there is a generalized Gelfand-Graev character 2" of
rr.) G such that (’u, 7.)a :/: 0 and is independent ofspaces of L with respect to T. For r 2, let Xr

be the root vector in L coming from a Chevalley
basis in characteristic 0, and let Xr( ):Ga’-* G
be the one-parameter subgroup of G (associated
with r) defined by Xr(t): exptXr, t Ga; let

Ur x(Ga). For

_
1, set Ui (U] r

(_ i)). Let Ux--* L(1) + L(2) be the map
defined by ( II xr(tr)) trXr, tr

rr.( 1) r r. (1) tJ Y.(2)

q.
2. Let us state some results concerning the

rationality of the generalized Gelfand-Graev
characters ?’.. In the following, is a primitive
p-th root of unity, c is a generator of Gal(Q()/
Q), and k is the quadratic subfield of Q().

Lemma 2. Assume that G is a simply-
connected, exceptional simple algebraic group defined

Ga, where the product is taken over the roots in over F (p being good for G). Then, for any h
(-- 1) arranged in some fixed order. (/-/r.), there is an element t in T’ such that

Let x" L x L---, K be a non-degenerate t- 1 (possibly t(-/ 1) and that e.
bilinear mapping such that x(Ad(g)X, Ad(g) Y) (.t(x) (txt-), x u.F).
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Proposition 3. Assume that G is an excep-
tional simple algebraic group defined over Fq (p
being good for G), and, lr -- G being the
simply-connected covering of the derived group of G,
let H be a subgroup of Ge

containing the group
7r(e). Let v be any finite place of k, and let kv be

H
the completion of k at v. Then any ’u zs realizable
In kv.

If Z is an irreducible character of a finite
group and if E is a field of characteristic 0, then
we denote by me(Z ) the Schur index of Z with
respect to E.

Corollary 1, Let the notation and the
assumption be as in Proposition 3. Let Z be any irre-

ducible character of H. Let m be the greatest com-
mon divisor of (,H, Z)n where ’u runs over all the
generalized Gelfand-Graev characters of G. Then

mQ(X) divides 2m.
Corollary 2. Assume that G is an exception-

al adjoint simple algebraic group defined over Fq
being good for G), and let H be the derived group of
G. Then there exists an upper bound for the Schur
indices of the irreducible characters of H indepen-

dent of q.
Remark 1. As to the upper bounds of the

Schur indices of finite simple groups, we refer
Barry [1], Benard [21, Feit [5], Gow [7, 8l,
Enomoto-Ohmori [4], Ohmori [12], Specht [13].

Remark 2. Let H-GLn(Fq). Then we
can prove that any ’u is realizable in Q. On the
other hand, by Kawanaka [9], for any irreducible
character X of H, there is a ’u such that (’u,

1. Therefore we have toO(Z) 1 for any 2:.
This is an alternative proof of Zelevinsky-Gow’s
theorem [14].

Next let H--3D,(q3) (p =/= 2). Then we can
also prove that any ’u is realizable in Q. On the
other hand, if 2: is any irreducible character of
H, then we see that the number m in Corollary 1
is equal to 1 (Geck [6]). Therefore we have

mq(2:)--1 for any 2:. This is an alterna-
tiveproof of Barry’s theorem [1].
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