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Introduction. M. Lelong [6] and L. Naim [8] (cf. e.g. [2]). For informations about fundamental
obtained a criterion of Wiener type for minimal properties of balayage we refer to [1],[2], [5], etc.
thinness for the Martin compactification of the The following lemma gives us the relation
upper half space of the d-dimensional Euclidean between the balayage on F and that on a cover-
space (d > 1). The purpose of this note is to ing surface of F.
give a criterion of Wiener type for minimal thin- Lemma 1.1 (cf. [7]). Let " be an unlimited
ness for the Martin compactification of a finite covering surface ofF, E a subset ofF, s a positive

sheeted covering surface of a punctured Rieman- superharmonic function on F and re the canonical
nian sphere. It is sufficient to consider an projection from F onto F. The_n, it holds that

F "E Fzt-1 (E)
r-sheeted unlimited covering surface W of D- Rs zr- -so

{0} (D is the unit disc). Denote by W the rela- on F.
rive boundary of W and zr- zrw the projection of Next we state the definition of thinness (cf.
I/vV W t3 W onto {0 < [z] <- 1}. We consider [1]). Let GF be the Green function on F with pole
the Martin cornpactification W* of W. Then W* at z.
takes a form W* W(3 W[3 A, where A is Definition 1.1. Letz be a point of F and E a

F"E
the ideal boundary of a bordered surface W. We subset of F. We say that E is thin at z if RG =/=

also denote by zl the set of minimal points in A. Gz on F.
We note that 1 <_ # A1 <_ r, where # A is the Assuming that E is closed and z belongs to
number of points in A (cf. [4]). Let A {,..., E in the above definition, it is well-known that
m}(m- # A) and denote by kj- kij(j-1,..., E is thin at z if and only if z is an irregular
m) the Martin function with pole at j. We set U point of F- E with respect to Dirichlet problem
--{w W’k(w)> i,ki(w)}(j: 1,..., m) (cf. e.g. [2]). In the case of F: D--{z C"
in the case of m > 1 and U1- W in the case of 1} we here review the Wiener criterion
m 1. for thinness.

Main theorem. Let E be a subset of W and j Proposition 1.1 (cf. [1]). Let L be a subset of
be an integer with 1 <_ j

_
m. Set E, {w D. Set

E C? U’sn<- kj(w) <- s"+)(s> 1). Then, E is

minimally thin at if and only if

E caPw(E)s < + oo,

where caPw(En) is the outer Green capacity of En.

1. Preliminaries 1.1 We begin with re-

L.= {zL’s" <log[z[- <_ s+}(s> 1).
Then, L is thin at 0 if and only if

cap (L) s < + oo,
n=l

where CaPv (Ln) is the outer Green capacity of Ln.

1.2. First we begin with definition of
calling the definition of balayage. Consider an minimal thinness. Let k be the Martin function
open Riemann surface F possessing the Green on F with pole at A.
function. Denote by z3(F) the class of all Definition 1.2 (cf. [1]). Let be a point of
nonnegative superharrnonic functions on F. Let E A and E a subset of F. Then, we say that E is

be a subset of F and s belong to x3. Then the minimally thin at if/ 4: k on F.
F^E F

balayage s R of s relative to E on F is de- Definition 1.3. Let be a point of A and
fined by U a subset of F. We say that UU {),is a

Rs (z) lim inf inf{u(x) "u 3, u > s on E) minimal fine neighborhood of if F- U is mini-
mally thin at .
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We close Preliminaries by stating the follow-
ing (cf.[S], [3]).

Proposition 1.2. Let be a point of AF and
E a subset of F. Then, E is minimally thin at if

y -E
is a Green potential on F.and only if R,

2. Proof of the main theorem 2.1 For
^E

simplicity of notation we denote by R the
balayage R of f.3 on W and set gx(z)

log] 1--a’z
Z- and g--g0. We write by p

(resp. q) the Green potential on D- {0}(resp.
W) of a Radon measure (resp. /) on
D- {0}(resp. W). The next proposition is the
heart of the main theorem.

Proposition 2.1. Let E be a subset of W.
Then, E is minimally thin at every j A if and
only if 7r(E) is thin at O.

Proof. Suppose E is minimally thin at every

j A 1. By Proposition 1.2 /k(/" 1,..., m) is

a Green potential on W. We remark that there
exist positive constants c(j= 1, m) such

m
that ($)go 7r-- =1c k on W. Hence,
Rgo--j=lC’Rkj is a Green potential on W.
Let p the Radon measure on W with Rgo q
and denote by 7r(p) the image measure of p by
zc. By the fact that gzrC n(w)"

./f (w) =z(n(w) is the multiplicity of 7r at w), we have

fg, zcd[ f n(w)"Gwdgp" (Z)
zc(w)=z

Z n(w).qU(w) n(w).fgo(W)
zc (w zc (w =z

on D- {0}. Hence, by the routine argument
on D- {0} because the image of a

p(z)polar subset of W by r is polar. Since is a
Green potential on D- {0} D-o(E> is a Green

D z(E)
potential on D- {0}, and hence, Rg
-o/(E) :/: g on D- {0} Hence, zr(E) is thin at
0.

Conversely suppose that re(E)is thin at 0.
Considering re(E)as a subset of D- {0} we
find that r(E) is minimally thin at 0. By Prop-
osition 1 2 ..g is a potential on D--{0}.

D-{O} ]r (E)
By this fact it is easily checked that _,g

is a potential on W. By Lemma 1.1 and the equa-
tion *D ^r(E) D-{0} ^r(E)

/lr-1 (r (E)) ’E/r-(r(E)) > C C-"gozc k Rk
^E

on W. Hence, Rg is a potential on W and hence,
E is minimally thin at every A. Therefore

we have the desired result.
2.2. Before proceeding to the proof of the

main theorem we observe some preliminary facts.
Lemma 2.1. Let Uj(j-- 1,..., m) be as in

Introduction. Then, U U {}(j-- 1,..., m) is a

minimal fine neighborhood of with U A Uj--
0 (iCj).

Proof. By the definition of U we have

U CI U- 0(i4:j),and

on U.. Therefore we have the desired result.
By the definition of U and the fact that

gorc--m__c k(c > O, i= 1,..., m) on W
we have

Lemma 2.2. k(j 1,..., m) is comparable
with g 7 on U, that is, there exist positive con-

stants A and B such that
A" k <- g Tr <- B" kj on U.

Lemma 2.3. Let K be a subset of W. Then,
cap (7r(K) <_ CaPw(K) <- r. cap (7r(K)
Proof We may suppose that K is a compact

subset of W. We remark that/ (resp. D-O#<g))
is a Green potential on W (resp. D- {0}). Let
/.t (resp. /.trig>) be the Radon measure on W
(resp. D-- {0}) with R qU (resp.
pU(). Since 1 < p((z) (w)=n(w)"
/(w) <_ r q.e. on zc(K) (n(w) is the multiplicity
of 7r at w), and pa< 1 q.e. on zc(K), by the
domination principle,

p’ _< p(> _< r-
on D. Therefore we have the desired result (cf.
[3, Corollary 4.5]).

Proof of the main theorem. By Lemma 2.1 we

find that E is minimally thin at if and only if

E A U is minimally thin at every i. Hence, by
Proposition 2.1, E is minimally thin at if and
only if zc(E Uj)is thin at 0. Therefore, by
Lemmas 2.2 and 2.3, and Proposition 1.1, we

have the desired result.
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