Einstein Normal Homogeneous Riemannian Manifold

By Joon-Sik PARK
Department of Mathematics, Pusan Univesity of Foreign Studies, Korea
(Communicated by Heisuke Hironaka, m. J. A., Oct. 14, 1996)

In this paper, we get a necessary and sufficient condition for certain normal homogeneous Riemannian manifolds with two irreducible summands by the isotropic representation to be Einstein. And then, we give such an example.

Let G be a compact connected semi-simple Lie group and H a closed subgroup. We denote by \mathfrak{g} and \mathfrak{h} the corresponding Lie algebras of G and H. Let B be the Killing form of g. Let g_{0} be the normal homogeneous metric in G / H which is induced from $Q(:=-B)$. We consider the $A d(H)$-invariant decomposition $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ with $Q(\mathfrak{h}, \mathfrak{m})=0$. Let $\mathfrak{m}=\mathfrak{m}_{1}+\mathfrak{m}_{2}$ be a Q orthogonal $\operatorname{Ad}(H)$-invariant decomposition such that $\left.\operatorname{Ad}(H)\right|_{\mathfrak{m}_{i}}$ is irreducible for $i=1,2$ and assume that \mathfrak{m}_{1} and \mathfrak{m}_{2} are inequivalent irreducible $\operatorname{Ad}(H)$-representation spaces such that
(1) $\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right] \subset \mathfrak{h}$ and $\left[\mathfrak{m}_{2}, \mathfrak{m}_{2}\right] \subset\left(\mathfrak{h}+\mathfrak{m}_{1}\right)=: \mathfrak{h}$. Let K be a closed connected subgroup with $H \varsubsetneqq$ $K \varsubsetneqq G$ which has the subalgebra \mathfrak{f} as its Lie algebra.

In this paper, we assume $\left(G / H, g_{o}\right)$ is a compact normal homogeneous Riemannian manifolds satisfying condition (1). The space of G invariant symmetric covariant 2 -tensors on G / H is given by $\left\{\left.x_{1} Q\right|_{\mathfrak{m}_{1}}+\left.x_{2} Q\right|_{\mathfrak{m}_{2}} \mid x_{1}, x_{2} \in R\right\}$. The Ricci tensor ρ of G-invariant Riemannian metric on G / H is a G-invariant symmetric convariant 2 -tensor on G / H, and we idintify ρ with an $A d(H)$-invariant symmetric bilinear form on \mathfrak{m}. Thus ρ is written as $\rho=\left.r_{1} Q\right|_{\mathfrak{m}_{1}}+\left.r_{2} Q\right|_{\mathfrak{m}_{2}}$ for some $r_{1}, r_{2} \in R$.

Now, we compute components of Ricci tensor ρ of $\left(G / H, g_{o}\right)$ explicitly. Let $d_{i}=\operatorname{dim}_{R} \mathfrak{m}_{i}(i=$ $1,2)$. Let $\left\{e_{\alpha}\right\}$ be a Q-orthogonal basis adapted to the decomposition of \mathfrak{m}, i.e., each $e_{\alpha} \in \mathfrak{m}_{i}$ for some $i \in\{1,2\}$, and $\alpha<\beta$ if $e_{\alpha} \in \mathfrak{m}_{1}$ and $e_{\beta} \in$ \mathfrak{m}_{2}. Next set $A_{\alpha \beta}^{\gamma}=Q\left(\left[e_{\alpha}, e_{\beta}\right], e_{\gamma}\right)$, so that $\left[e_{\alpha}, e_{\beta}\right]_{\mathfrak{m}}$ $=\sum_{r} A_{\alpha \beta}^{r} e_{r}$, and set $\left[\begin{array}{c}k \\ i j\end{array}\right]:=\sum\left(A_{\alpha \beta}^{r}\right)^{2}$, where the sum is taken all over indices α, β, γ, with $e_{\alpha} \in \mathfrak{m}_{i}, e_{\beta} \in \mathfrak{m}_{j}, e_{r} \in \mathfrak{m}_{k}(1 \leq i, j, k \leq 2), \quad$ and
$[,]_{\mathfrak{m}}$ denotes the \mathfrak{m}-component. Then, $\left[\begin{array}{c}k \\ i j\end{array}\right]$ is independent of the Q-orthonormal bases chosen for $\mathfrak{m}_{1}, \mathfrak{m}_{2}$, and

$$
\left[\begin{array}{c}
k \tag{2}\\
i j
\end{array}\right]=\left[\begin{array}{c}
k \\
j i
\end{array}\right]=\left[\begin{array}{c}
j \\
k i
\end{array}\right]
$$

Lemma 1. The components r_{1}, r_{2} of Ricci tensor ρ on $\left(G / H, g_{0}\right)$ are given

$$
r_{k}=\frac{1}{2}-\frac{1}{4 d_{k}} \sum_{j, i}\left[\begin{array}{l}
k \tag{3}\\
j i
\end{array}\right] \quad(k=1,2)
$$

Proof. Let $\left\{e_{j}^{(k)}\right\}_{j=1}^{d_{k}}$ be Q-othonormal basis on $\mathfrak{m}_{k}(k=1,2)$. The Ricci tensor ρ on (G / H, g_{o}) is given by the following (cf. [1], pp. 184-185):

$$
\begin{aligned}
& \rho(X, X)=-\frac{1}{2} \sum_{\alpha} Q\left(\left[X, e_{\alpha}\right]_{\mathfrak{m}},\left[X, e_{\alpha}\right]_{\mathfrak{m}}\right) \\
& \quad+\frac{1}{2} Q(X, X)+\frac{1}{4} \sum_{\beta, \alpha} Q\left(\left[e_{\beta}, e_{\alpha}\right]_{\mathfrak{m}}, X\right)^{2}
\end{aligned}
$$

for $X \in \mathfrak{m}$. From this equation, we have

$$
\begin{aligned}
r_{k}= & r\left(e_{l}^{(k)}, e_{l}^{(k)}\right) \\
= & \frac{1}{2}-\frac{1}{2} \sum_{j, i} \sum_{s} Q\left(\left[e_{l}^{(k)}, e_{s}^{(i)}\right]_{\mathfrak{m}_{j}},\left[e_{l}^{(k)}, e_{s}^{(i)}\right]_{\mathfrak{m}_{j}}\right) \\
& +\frac{1}{4} \sum_{j, i} \sum_{s, t} Q\left(\left[e_{s}^{(j)}, e_{t}^{(i)}\right]_{\mathfrak{m}_{k}}, e_{l}^{(k)}\right)^{2}
\end{aligned}
$$

As we remarked above,

$$
d_{k} r_{k}=\sum_{\ell=1}^{d_{k}} r\left(e_{\ell}^{(k)}, e_{\ell}^{(k)}\right)=\frac{d_{k}}{2}-\frac{1}{4} \sum_{j, i}\left[\begin{array}{c}
j \\
k i
\end{array}\right]
$$

Q.E.D.

Homogeneous space K / H in $H \varsubsetneqq K \varsubsetneqq G$ need not be effective in general. So let K^{\prime} be the quotient of K acting effectively on K / H. We also assume that K^{\prime} is semi-simple and $\left.c Q\right|_{\mathfrak{e}^{\prime}}=Q_{\mathrm{t}^{\prime}}$ for some $c>0$, where $Q_{\mathfrak{e}^{\prime}}$ is the negative of the Killing form of \mathfrak{t}^{\prime}.

By our assumption (1), we have

$$
\left[\begin{array}{c}
1 \tag{4}\\
11
\end{array}\right]=\left[\begin{array}{c}
2 \\
11
\end{array}\right]=\left[\begin{array}{c}
2 \\
22
\end{array}\right]=0
$$

We obtain

$$
\left[\begin{array}{c}
2 \tag{5}\\
12
\end{array}\right]=(1-c) d_{1}
$$

since

$$
\begin{aligned}
{\left[\begin{array}{c}
2 \\
12
\end{array}\right] } & =-\sum_{e_{\alpha} \in \mathfrak{m}_{1}} t r_{\mathfrak{m}_{2}}\left(p r_{\mathfrak{m}_{2}}\left(\text { ad } e_{\alpha}\right)\right)^{2} \\
& =\sum_{e_{\alpha} \in \mathfrak{m}_{1}}\left\{-\operatorname{tr}_{\mathrm{g}}\left(\text { ad } e_{\alpha}\right)^{2}+t r_{\mathrm{t}_{\mathrm{e}}}\left(\text { ad } e_{\alpha}\right)^{2}\right\} \\
& =\sum_{e_{\alpha} \in \mathfrak{m}_{1}}\left\{-t r_{\mathrm{g}}\left(\text { ad } e_{\alpha}\right)^{2}+t t_{\mathfrak{e}^{\prime}}\left(\text { ad } e_{\alpha}\right)^{2}\right\} \\
& =\sum_{e_{\alpha} \in \mathfrak{m}_{1}}\left\{Q\left(e_{\alpha}, e_{\alpha}\right)-Q_{\mathfrak{t}^{\prime}}\left(e_{\alpha}, e_{\alpha}\right)\right\} \\
& =(1-c) d_{1}
\end{aligned}
$$

by (4).
Thus, from (4), (5) and Lemma 1, we obtain
Theorem 2. Assume that G is a compact connected semisimple Lie group, \mathfrak{m} decomposes into two inequivalent irreducible summands which satisfy condition (1), and that $\mathfrak{t}:=\mathfrak{h}+\mathfrak{m}_{1}$ is a subalgebra with $Q_{\mathbf{t}^{\prime}}=\left.c Q\right|_{\mathfrak{R}^{\prime}}$. Then $\left(G / H, g_{0}\right)$ is Einstein if and only if $d_{2}=2 d_{1}$. Moreover, if g_{o} in $\left(G / H, g_{o}\right)$ is Einstein, then $g_{o}=\frac{(1+c)}{4} \rho$.

Example. We consider the case when $G=$ $S O(2 n+m), K=S O(2 n) \times S O(m)$ and $H=$ $U(n) \times S O(m)$, where $n \geqq 3, m \geqq 2$. Note that the imbedding of $U(n)$ into $S O(2 n)$ is given by

$$
A+\sqrt{-1} B \rightarrow\left(\begin{array}{rr}
A & B \\
-B & A
\end{array}\right) .
$$

The spaces \mathfrak{m}_{1} and \mathfrak{m}_{2} are given by
$\mathfrak{m}_{1}=\left\{\left.\left(\begin{array}{rrr}X & Y & 0 \\ Y & -X & 0 \\ 0 & 0 & 0\end{array}\right) \right\rvert\, X, Y \in \mathfrak{8 0}(n)\right\}$,
$\mathfrak{m}_{2}=\left\{\left.\left(\begin{array}{rr}0 & Z \\ -{ }^{\mathrm{t}} \boldsymbol{Z} & 0\end{array}\right) \right\rvert\, Z\right.$ is a real $2 n \times m$ matrix $\}$.
m_{1} is $\operatorname{Ad}(H)$-irreducible (cf. [2]).
Note that $\bar{H}:=S O(n) \cdot U_{1}(\subset H)$ acts on \mathfrak{m}_{2} by

$$
\left(\begin{array}{ccc}
\cos \theta \cdot A & \sin \theta \cdot A & 0 \\
-\sin \theta \cdot A & \cos \theta \cdot A & 0 \\
0 & 0 & B
\end{array}\right)\left(\begin{array}{rrr}
0 & 0 & C \\
0 & 0 & D \\
-{ }^{t} C & -{ }^{t} D & 0
\end{array}\right)
$$

$\left(\begin{array}{ccc}\cos \theta \cdot A & \sin \theta \cdot A & 0 \\ -\sin \theta \cdot A & \cos \theta \cdot A & 0 \\ 0 & 0 & B\end{array}\right)^{-1}=\left(\begin{array}{rrr}0 & 0 & P \\ 0 & 0 & Q \\ -{ }^{t} P & -{ }^{t} Q & 0\end{array}\right)$,
where $P=\cos \theta \cdot A C B^{-1}+\sin \theta \cdot A D B^{-1}, Q=$ $-\sin \theta \cdot A C B^{-1}+\cos \theta \cdot A D B^{-1}$. Thus we see that \mathfrak{m}_{2} is an irreducible $\operatorname{Ad}(H)$-module. Moreover, \mathfrak{m}_{1} and \mathfrak{m}_{2} are mutually inequivalent $\operatorname{Ad}(H)$ representation spaces and thus the homogeneous manifolds $G / H=S O(2 n+m) /(U(n) \times S O(m))$, $n \geqq 3, m \geqq 2$, satisfy our assumptions. We also have
(6) $d_{1}=\left(n^{2}-n\right), d_{2}=2 n m, c=2 / 3$.

Thus, from Theorem 2 we get
Theorem 3. $\quad(S O(2 n+m) /(U(n) \times S O(m))$, g_{o}), ($n \geqq 3, m \geqq 2$), are Einstein if and only if m $=(n-1)$. Moreover, if $(S O(2 n+m) / U(n) \times$ $\left.S O(m), g_{o}\right),(n \geqq 3, m \geqq 2)$, are Einstein, then $g_{o}=(5 / 12) \rho$.

References

[1] A. L. Besse: Einstein Manifolds. Springer Verlag, Berlin (1987).
[2] S. Helgason: Differential Geometry and Symmetric Spaces. Academic Press, New York (1978).
[3] M. Wang and W. Ziller: On normal homogeneous manifolds. Ann. Sci. Ecole Norm. Sup., 18, 563-633 (1985).
[4] M. Wang and W. Ziller: Existence and nonexistence of homogeneous Einstein metrics. Invent. Math. , 84, 177-194 (1986).
[5] J. Wolf: The geometry and structure of isotropy irreducible homogeneous spaces. Acta Math., 120, 59-148 (1968), Errantum. Acta Math., 152, 141-142 (1984).

