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Hecke Correspondences and Betti Cohomology Groups
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Hilbert Modular Varieties of Dimension -<3
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Abstract: We consider Betti cohomology groups of smooth toroidal compactifications of
Hilbert modular varieties and representations of Hecke correspondences on them. We study
absolute values and zeta functions of eigenvalues of those operators for varieties of dimension
<-- 3. Our main results are Theorems 1N6 below.

Notations and introduction. K" a totally
real algebraic number field, --the principal
order of K,g= [K’Q], N" a rational integer

-> 3, F(1) {7 GL2() [det 7 is totally posi-
tive}, F(N) {7 F(1) [7 -= 1 (mod N)}, "the Cartesian product of g complex upper half
planes, F(N)\ g" the Hilbert modular variety.
We fix a regular and projective /(1)-admissible
family v of polyhedral cone decompositions once
for all. Note "Y’(1)-admissible’’= "({the totally
positive units group of )Ix (the additive group
))-admissible". For a neat congruence subgroup
F of F(1), from v, one gets the smooth projective
toroidal compactification Mr (f’\ Y3g) of
F\ gg, cf. Ash et al. [1], Hirzebruch [10].

This note may be regarded as continuation
of [8] and [9]. In Theorem 2 of [8] and Theorem 8
of [9] we have given sharp estimates for eigenval-
ues of "Hecke operators" acting on Betti cohomol-
ogy groups of arbitrary degrees d k 0 of smooth-
ly compactified Hilbert modular varieties for all
the prime ideals p of with prime numbers p A"
N, also cf. Remark 2 below. We shall study them
on middle Betti cohomology groups also for the
other prime ideals of in Theorems i and 5
(g <--3). For this we shall extend the method
given in [7], cf. Theorems 1N3 in {}1. In addition,
for any g > 0 we shall study "Hecke operators"
{Fn(T(II))}(LI,N)=I with n --> 0 defined adelicly
and acting on certain direct sum of Betti coho-
mology groups of the smooth compactifications,
cf. Theorem 4 and the explanation before
Theorem 6. We shall consider also zeta functions
with Euler products attached to arbitrary
common eigen-forms for {Fn(T(I1))}(U,N)=I, cf.

Theorem 6.

1. Treatment without adeles. Write G+()
the monoid {7 M.,()[ det 7 is totally

positive}, and D the Hecke ring HR(F(N),
G+()). Write C the algebraic correspondence
ring of the cycles of codimension g on Mr(N)
X speccMr(N). Let cr G+(O). Put a N(det
a). Recall [8] and [9]. The complex analytic
morphism a F(a F( induced
by a" Og and aF(aa- F(, ex-

tends to a unique morphism o-o1" Mr(aN)
Mr(m (see the explanation next to (2) below.) Let
can denote the canonical morphism:

Mr() induced by id.’@g @g and F(a
F(. Let (F(aF() denote the scheme
theoretic image of the morphism (can,

Mr(). It is a cy-Mr(an) Mr(n) X Spec cMr(n)
cle of codimension g. By [4], [6] and [9], the map
F"D C, given by F(aF( (F(
aF(), is a ring homomorphism. Let " C
gg(Mr(N), C) denote the ring homomorphism
given by y the fundamental class of y, cf. [9],
5. By Knneth we have the anti-C-algebra iso-

z - (p(z)) n=o, cf. [9], 5. Put g pg oF.
We get the anti-C-algebra homomorphism

Hg(Mr by the(Id.) @ C @zD Endc (y),

scalar extension of from Z to C. For any x
C zD, we call (x) the Hecke operator of x on
Hg(Mr(N), C), cf. [5], [6], [8] and [91. Our first
main result is

Theorem 1. Assume g K 3. Write
F(. Let r be an integer > O, let {w}= be com-
plex numbers O, and let {}= c G+(). Let
denote any eigenvalue of (=1 w’F. We
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obtain a suitable smooth compactification on which

(1) 121 <- w, I(degFf) all the Hecke correspondences can be simul-

i=1 taneously made to act." Our results will show

If there exists any fl [3 =1FIF such that both that this statement is mistaken, cf. [4], [5], [6], [8]
eigenvalues u and v of fl are contained in K and and [9].
such that u/v is not a unit of , we obtain strict In the rest of 1, we assume g-- 2, give

inequality in (1). Here deg F4F-- the number of Theorems 2 and 3, and demonstrate Theorem 1

(F\IIF) for each [1, r], and [" [denotes for g 2. Write / F(N). By the Hodge de-
the ordinary Archimedean absolute value on C. composition, H (Mr, C) H’ (Mr) @c H(’)

Remark 1. Assume g-- 3. Then HI(Mr(N), (Mr) @c H(’e) (Mr). Since H’) (Mr) does not
C) {0}, cf. Freitag [3]. Hence by the same consist of only the primitive classes, the proof
argument as in [7] we obtain Theorem 1. given in [7] does not apply to the present case

Remark 2. Assume g -- 4. Let /" =/’(N). directly. Write S.(/-) the space of the holomor-
It is an open problem whether one has (1) or not. phic Hilbert cusp forms of weight (2,2) on /’. We
On the other hand, for every prime number p have S.(F) H (e’) (Mr) --H

(’e) (Mr by f(z,
remaining prime in K with p Z N, we have got ze) -*f(z, z.)dzl/k dze. From [4] we see that the
already I1<_ 2p/ in [9] and [8] where 2 is spaces H (e’) (Mr), H (’) (Mr) and H(’) (Mr)

(()F)(10
Note deg

are(x)-invariantfranyxC@zD’andthat
any eigenvalue of /"

0 p the action of the Hecke operators on H’)

(1 0)F) I 4- pg-- 1 4- N(p) for any (Mr)is compatible with that on S.(]-). FollowingF_ 0 P--- Ash et al. [1] and Shimizu [14], now let us intro-
prime number p remaining prime in K with p duce certain truncations (Xo}o>>o of F\ e. Let t
N ;2p/< 1 +p. (In [9] and [8] we have be the number of the inequivalent cusps of
treated H’(Mr, C) for any d > 0.) F\ and let (c, ce,’’’, ct) denote a complete

Remark 3. Let 1"--F(N). Hirzebruch and set of the F-inequivalent cusps. Let 0 denote a
Zagier [11] and Geer ("Hilbert modular surfaces," sufficiently large positive real number. Write
springer, 1988) treated Hecke correspondences {(z, ze) yfie (Im zl) (Im ze) --> 0}. For each
on F\ ye. They did not consider, however, Hecke p [l, t] choose an element a {g GL.(K)
correspondences on smooth compactifications of det g is totally positive} with a,cv (v/- 1 oo,
1"\@. Let c G+(). Let denote a d-closed v/- 1 oo). Put U,(0) a-(Wo), and D(O)
differential 2-form on ],\@e. They define their I-’c,\ U,.,(O) for each p [1, t]. Here /’c the
action of the Hecke rings on HR(F\,e, C)as isotropy group of cusp c, in F. For each p

follows" {For FcF U ’ Fc (disjoint) deJ= [1 t] write Dr(O) int
for the interior of D(O)

Rham cohomology class of rf_.r de Rham coho- Write X the complement of (tA t=D(0) int) in

mology class of =1 O cj}. Let o) y[dx A F\@e. Let (zl, ze) Y). Write z- x 4- v/- 1
dy q- yedxe A dye be the 2-form on F\ yfie de- y (i 1, 2) with real variables {x, y}e__. Write

fined below. Hence, (Their action of FaF) o) y[edXl A dy q- y[edxe A dy which is a

([co]) [=1WoC] [pw] (deg FaF) [w] 2-form on F\ y)e. By Propositions 1.1 and 1.2 in

where [co] de Rham cohomology class of c.o Mumford [13], the functional (w): {C differen-

HR(F\5e, C). On the other hand we have tial 2-forms on Mr}-*C, given by
studied the Hecke correspondences (FaF) on

lim fx o A v, is a d-closed current on Mr. The
Mr in [8], [9] and this note, and give Theorems -.+oo

1---6 here. Notice the strict inequalities in cohomology class of (2zc)-l(w) H*(Mr, Q).
Theorems 1 and 5 in this note. Also cf. Theorem We can choose and fix a real analytic Hodge met-
8 in [9]. tic DO on the complex projective manifold Mr

Remark 4. On p. 305 of D. Ramakrishnan’s For a current 0y on Mr, let qY H/4- diG/

paper "Arithmetic of Hilbert-Blumenthal Sur- 6dG/ be the orthogonal decomposition of 0y in

faces" in Canadian Mathematical Society Confer- Potential Theory with respect to -Qo. We have
ence Proceedings, Volume 7, 285-370 (1987), 6dG(oo) --0. By C. L. Siegel fr w A w > 0.
A.M.S. the author states "it is not possible to find \
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By the Hodge index theorem, the signature of the
intersection form on H(I’I(Mr)is (1, m- 1)
with m dime H’ (Mr). For differential
2-forms u and u2 on Mr, write [u, u2]

L u A We have

(2) There is a C-basis {H(oo}} U {}-= of
H(’(Mr) such that (i) [H(m), H(o)] > 0; (ii)
[H(o}, ] 0 for any k [1, m 1]; (iii)
[, ] -0 if iCj; (iv) [, ] 1 for
any k [1, m- 11.

Let G + (). There is a system {}v= of
representatives for FFF such that FF
U=" F% (disjoint) U =1%F (disjoint), cf. [15].
Put a No(det a). Then (a-F(a aF(
a F(a, el. [9]. Hence, F(aa

-1F(a c F( and F(aa c F(a
F(. Let (resp. ) denote the canonical
morphism: Mr(am (a-F(aa @z)- (resp.
Mr(a) (aF(aa- @)-), and let denote
the canonical morphism: Mr(a) Mr(. The

-)map (resp. induces a unique morphism

2)-(aF(aa- @ Mr(am). For any differen-
tial form on Mr(>, we write oa (resp.

the pull back of by the morphism
(resp. oz) for short. They are dif-

ferential forms on Mr(a). Therefore we may re-
-1

gard u=oa and u=oa on Mr(a> as
differential forms on Mr(m. Then we obtain the
following two theorems.

Theorem 2. Notations being as in (2), the
C-linear subspace C(H{)) spanned by H{w) is

(x)-invariant for any x C @zD. (D HR(F,

Theorem 3. Notations being as in (2), the
C-linear subspace m-= C spanned by {
is (w)-invariant for any x C@zD. (D-
HR (F, G + ()).)

For each i [1 r] let {,,= be a system
of representatives for FFMF. Write N
(detM,) for each i [1, r], and H=.
For a differential form on Mr let M, (resp.

-1oM,) denote the form on Mr(, defined above.
-1For each (i,j) let [oM,] (resp. [oMa]) de-

note the form on M,, which is the pullback of
-1oM, (resp. oM,) under the canonical morph-

2N.ism Mr(,’ Mr(d by Nla We can
choose a real analytic Hodge metric
and consider the orthogonal decomposition HY

+ d&.G2Y+ 6dG.Y of a current Y on
with respect to $2 in Potential Theory. Let , be

H(1,1)any eigenvalue of (-i=1 Wi"Fi on (Mr).
By (2) and Theorems 2 and 3 we have only to
consider the following two cases.
Case 1 of (= wi Fdi H(w) 2H(w)
Let V denote the vector space ri=1 j=l

C[(H())M,fl. Define a Hermitian scalar
product )" V x V C by (, 2)=

I j A 2 for all and
vo(r( )

in V. We can apply the argument in [7]. We
obtain that this is positive definite, and
Case 1 of Theorem 1.
Case 2 of (i=w Fdi for some
non-zero m-=1 C Let V denote the vec-

tor space m- r
=1 i=1 j=l C[Mi,] Define a

Hermitian scalar product )’ V x Va
by (1’ a)

1 fMvol(V(a )
for all and a in Va. We can apply the argu-

ment in [7]. We obtain that this is also
positive definite, and Case 2 of Theorem 1.

We may leave the details to the reader.
(There is a matrix P G+(O) such that P-P
is diagonal. Put b N(detP). Consider
Mr( and Mr.)

Using the Petersson scalar product on

Sa(D we get Theorem 1 also for any common
eigen-form in H(a’)(Mr)and H(’a)(Mr) by the
same argument. (For g 1, cf. Drinfeld [21.)

2. Treatment with adeles. Write G+
GL(R), the product of the g infinite
primes of K, and h the number of ideal classes
modulo . Take h elements t,’’’, th of K so

that (t) 1 and t#,’", t, form a set of rep-
resentatives for such ideal classes, and put x
(1 0) foreachj [1, h]. Let p denote a max
0 t

imal ideal of 0. Let X and N be rational integers

>3 with ((=t))lN. Write Y- {(a b)c d

GLa(K.) a 1 b c 0 (mod NO,), d

U.} W. {x Y. (det x) 1 (mod NO.)}
W= G+ x W.; Y= GL(KA) a (G+ x

Y,). (Notice the distinction between our defini-
tions and Shimura’s [16], of W and Y.) Write

xWx7 GLa( for each j. Then for each j,

F is neat, and F(N) c F c F(). Let HR(W,
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Y) denote the Hecke ring for the monoid Y D the
group W. Now let us fix any y Y. Then for
each j one can define /2(j’) by the condition that
(det y) tt,j) is the principal class modulo

-1
There is some cj xYx GL(K) with
WyW Wx-lax() W. Put a N(det a).
Now write q)l, and P(j> for the canonical
morphisms MraN.) Ma71raN.)a? Mra,N2)

and Mr<aN2 ---* Mr,<, respectively, induced by the
inclusions of the subgroups Write " for the
morphism MaTr(a,N,)a, "-- Mr(a,N.) induced by c"
Yg-- Y. Write $(FcFu()) for the scheme-
theoretic image of the morphism (PuJ), cr
l)’Mr(aN>-- Mrs<,> spec cMr, It is a cycle of
codimension g. By KOnneth, (FoF() induces a

2g
unique element of n=oHmc Hn(Mr,, C),
Hn (Mrs<,,, C)) for which we write (Pn($(Fj
r))),=o. Hence WyW induces F,(WyW)
h h H"= p,((FaF<))) Endc ( = (Mr C))
for each n [0,2g]. Extend the domain of Fn to
the whole HR(W, Y) linearly. By the method
given in [4], [6] and [9] we obtain:

Theorem 4. For each n [0,2g], the map
F.’HR(W Y)--Endv (@h H

,
=1 (Mr,, C)) is an

anti- ring homomorphism.
For a maximal ideal p of 0 with p’N,

choose any 7r, K, with ord, 7r,- 1. Put T(O)

W,(01 0)Wand S(,)= W( 0 r0) W" Case

of g- 2 {For each j [1, h], put o(J) the
subspace C((w)) of H(Mr,, C), where
is the cohomology class of (w) obtained by re-
placing Mr by Mr, in 1. Put Vl(J’) the orthog-
onal complement of g/0(J) with respect to the in-
tersection form: H (Mr, C) H (Mr,, C) -- C.
As in Theorems 2 and 3 in 1, both V0

,h.l0(J’) and 1 )__lVl(J") are HR(W, Y)-
invariant subspaces of h__IH(Mr" C)}. There
is such an integer n > 0 as p s a principal
ideal modulo . Using Theorem 1 in 1 we
obtain

Theorem 5. Assume g-- 2 (resp. 3). Take
any {0, 1}. Recall F" HR(W, Y) --* Endc (=
H(Mr,, C)) (resp. F" HR(W, I0 --* Endc(@=h
H (Mr,, C))). Any eigenvalue 2 of F(T(p))
(resp. Y(T(p))) satisfies 121 < 1 + Np

( 1 0 )W (strictly smaller) for any maximaldeg W
0

ideal p of 0 with p X N.

According to Shimura [16], for each integral
ideal lI of ?, let T(II)denote the element of
HR(W, Y) which is the sum of all different WyW
with y Y such that (dety)O ll; define
SN(I HR(W, Y) to be II S(p)

p: p 1I, maximal

if (1I, N) 1. Define SN(I1) 0 if (1I, N) = 1.
Note that e:__f {T(p) [p A/ N, p is maximal}
{SN(P) P 2’ N, p is maximal} are commutative
with one another. Hence, there is a common
eigen-form f =/: 0 of all {F(g)}g_ in for each
i {0, 1} if g-- 2; there is a common
eigen-form f4= 0 of all (Fa(g)}eee in

H(Mr,, C) if g 3. Let fbe any such common
eigen-form for g--< 3. Recall g= [K:Q]. We
have (Fg (T(I1))) f cur for any integral ideal
of with (1I, N)= 1. Then there is a unique
Abelian character X of the ideal classes modulo

00 such that (Fg(SN(P)))(f)= X(P)f for any
maximal ideal p of with p A/ N. Note IX(P)[-- 1
for any such p. One has the formal Euler product
equation T(ll) (NI1) -s= II

lI: (II,N) =1 p :pAN, maximal

(1- T(p) (Np)-s+ SN(O) (SP) taence,

by Theorem 4, we have the following formal
Dirichlet series equation attached to f:
(6.1) Z cu(NII) -s

1I: (I1,N)=1

IX (1 Cp (N) -s 2f_ Z () [./3)’’’K .1-2s.-1).
: XN, maximal

From Theorem 5 we obtain
Theorem 6. Assume g <-- 3. The Euler prod-

uct in the right side of (6.1) converges absolutely
and uniformly on any compact subset of {s C IRe
s > 2). (Hence it becomes a holomorphic function at
least on (s C IRe s > 2).)

Question 1. For every such common
eigen-form f as in Theorem 6, does Dirichlet
series (6.1) extend holomorphically to the whole
of C?
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