A Remark on Estimates of Bilinear Forms of Gradients in Hardy Space

By Yasuyuki SHIMIZU

Department of Mathematics, Hokkaido University (Communicated by Kiyosi ITÔ, M. J. A., Oct. 14, 1996)

§0. Introduction. In a recent interesting paper [1] L.C. Evans and S. Müller established the estimate of local Hardy space norm of gradients ψ_{x_1} , ψ_{x_2} :

$$(0.1) \qquad \| \phi \phi_{x_1}^2 \phi_{x_2} \|_{h^1} + \| \phi (\phi_{x_1}^2 - \phi_{x_2}^2) \|_{h^1} \\ \leq C(\| \phi_{x_1} \|_{L^2(B(0,R))}^2 + \| \phi_{x_2} \|_{L^2(B(0,R))}^2) \\ \text{provided that}$$

(0.2) $-\Delta \phi = \omega \ge 0 \text{ in } \mathbf{R}^2.$

Here ϕ is in $C_0^{\infty}(\mathbf{R}^2)$ and the constants Cand \mathbf{R} depends only on ϕ ; h^1 is a local Hardy space defined in §1 and $B(x, \mathbf{R})$ denotes the closed ball of radius \mathbf{R} centered at $x \in \mathbf{R}^2$. (Another proof based on harmonic analysis is given by Semmes [2].)

This estimate is useful in proving the existence of weak solutions for the initial value problem of the two-dimensional Euler equation when the vorticity of the initial value is nonnegative measure ([1] and Delort [3]). The assumption $\omega \ge 0$ in (0.2) is essential for the estimate (0.1); in fact, Evans and Müller [1] gave a counterexample for (0.1) when the condition $\omega \ge 0$ is violated. However, in their example the set where ω is nonnegative may be complicated.

In this paper we give another counterexample for (0.1) even when ω is odd in the second variable x_2 i.e. $\omega(x_1, x_2) = -\omega(x_1, -x_2)$ and $\omega(x_1, x_2) \ge 0$ for $x_2 \ge 0$. This suggests that it is difficult to extend weak solutions for the initial-boundary value problem of the Euler equation when the domain is a half space \mathbf{R}^2_+ even if initial value is nonnegative in \mathbf{R}^2_+ .

To get our counterexample we construct a sequence ϕ^{ε} of form $\phi^{\varepsilon}(x) = \phi(x/\varepsilon)$. A key observation is the existence of function ϕ that satisfies

$$\int_{\mathbf{R}^2} \psi_{x_1}^2 \, dx \neq \int_{\mathbf{R}^2} \psi_{x_2}^2 \, dx$$

with $-\Delta \psi = \omega$, where $\omega \in C_0^{\infty}(\mathbf{R}^2)$ is odd in the second variable x_2 and $\omega \ge 0$ in \mathbf{R}_+^2 , and $\psi \in H^1(\mathbf{R}^2)$; $H^1(\mathbf{R}^2)$ denotes the Sobolev space, i.e. the space of $f \in L^2(\mathbf{R}^2)$ with $f_{x_1}, f_{x_2} \in L^2(\mathbf{R}^2)$.

§1. Definition and main theorem. We begin with definition of local Hardy space as in [1].

Definition 1.1. Let η be in $C_0^{\infty}(\mathbf{R}^n)$ with $\operatorname{supp} \eta \subset B(0,1)$ and $\int_{\mathbf{R}^n} \eta \, dx = 1$. For a function f in $L^1_{loc}(\mathbf{R}^n)$, f^{**} is defined by (1.1) $f^{**}(x) = \sup_{0 < r < 1} \left| r^{-n} \int_{\mathbf{R}^n} \eta \left(\frac{x - y}{r} \right) f(y) \, dy \right|$. The local Hardy space \mathscr{H}^1 is defined by

The local Hardy space \mathcal{H}_{loc}^{1} is defined by (1.2) $\mathcal{H}_{loc}^{1}(\mathbf{R}^{n}) = \{f \in L_{loc}^{1}(\mathbf{R}^{n}) \mid f^{**} \in L_{loc}^{1}(\mathbf{R}^{n})\}$

We recall the normed local Hardy space h^1 defined by

(1.3) $h^1(\mathbf{R}^n) = \{f \in L^1(\mathbf{R}^n) \mid f^{**} \in L^1(\mathbf{R}^n)\}$ with the norm

$$\|f\|_{h^{1}(\mathbf{R}^{n})} = \|f^{**}\|_{L^{1}(\mathbf{R}^{n})}.$$

Definition 1.2. For a function f in $C_0^{\infty}(\mathbf{R}^2)$, we define the operator $(-\Delta)^{-1}$ by

(1.4)
$$(-\Delta)^{-1} f(x) = \frac{1}{2\pi} \int_{\mathbf{R}^2} f(y) \log |x - y| dy.$$

Theorem 1.3. Let T and S be the spaces of form

$$T = \{ \omega \in C_0^{\infty}(\mathbf{R}^2) \mid \omega(x_1, x_2) \ge 0 \text{ for} \\ x_2 \ge 0, \ \omega(x_1, x_2) = - \ \omega(x_1, - x_2) \}, \\ S = \{ (-\Delta)^{-1} \omega \mid \omega \in T \}.$$

Then there exists a sequence $\{\psi^{\varepsilon}\}_{0<\varepsilon<1}$ in S such that

$$\sup_{0<\varepsilon<1} \left\| \, \phi^\varepsilon \, \right\|_{H^1(\boldsymbol{R}^{2)}} < \infty$$

and

(1.5) $\lim_{\varepsilon \downarrow 0} \| \phi(\psi_{x_1}^{\varepsilon})^2 - (\psi_{x_2}^{\varepsilon})^2 \} \|_{h^1(\mathbf{R}^2)} = \infty$

where $\phi \in C_0^{\infty}(\mathbf{R}^2)$, $0 \leq \phi \leq 1$, $\phi \mid_{B(0,1/8)} \equiv 1$ and $\operatorname{supp} \phi \subset B(0,1/2)$.

§2. Proof of theorem. At first, we show a fundamental estimate in normed local Hardy space; this is an extension of a result to Evans and Müller [1].

Lemma 2.1. Assume that
$$f$$
 is in $L^{1}(\mathbf{R}^{n})$,
and $\int_{\mathbf{R}^{n}} f(x) dx = C_{f} \neq 0$. Let $f^{\varepsilon}(x) = \frac{1}{\varepsilon^{n}} f\left(\frac{x}{\varepsilon}\right)$.

[Vol. 72(A),

2

Then
$$\| f^{\varepsilon} \|_{L^{1}} = \| f \|_{L^{1}} < \infty$$
, and
(2.1)
$$\lim_{\varepsilon \downarrow 0} \| \phi f^{\varepsilon} \|_{h^{1}(\mathbf{R}^{n})} = \infty$$

for a function ϕ in $C_0^{\infty}(\mathbf{R}^n)$ with $0 \leq \phi \leq 1$, $\phi|_{B(0,1/8)} \equiv 1$, and $\operatorname{supp} \phi \subset B(0,1/4)$.

Proof. L^1 -estimate is easily obtained by scaling variables. To show the estimate (2.1), assume that the function η in (1.1) satisfies $0 \leq \eta \leq 1$ and $\eta \mid_{B^{(0,1/2)}} \equiv 1$. Now we estimate the function $(\phi f^{\epsilon})^{**}$: (2.2) $(\phi f^{\epsilon})^{**}(x)$

$$= \sup_{0 < r < 1} \left| \frac{1}{r^n} \int_{\mathbf{R}^n} \eta\left(\frac{x - y}{r}\right) \phi(y) f^{\varepsilon}(y) dy \right|$$
$$= \sup_{0 < r < 1} \left| \frac{1}{r^n} \int_{\mathbf{R}^n} \eta\left(\frac{x - \varepsilon z}{r}\right) \phi(\varepsilon z) f(z) dz \right|.$$
Now take a parameter $\mathbf{R} > 0$ and let $\mathbf{r} =$

Now take a parameter R > 0, and let r = 4 |x|. Then

$$(2.3) \quad (\phi f^{\varepsilon})^{**}(x) \\ \ge \frac{1}{4^{n} |x|^{n}} \left| \int_{B^{(0,R)}} \eta\left(\frac{x-\varepsilon z}{4|x|}\right) \phi(\varepsilon z) f(z) dz \right| \\ - \frac{1}{4^{n} |x|^{n}} \left| \int_{\mathbf{R}^{n} \setminus B^{(0,R)}} \eta\left(\frac{x-\varepsilon z}{4|x|}\right) \phi(\varepsilon z) f(z) dz \right| \\ = I_{1}^{\varepsilon} - I_{2}^{\varepsilon} \text{ for } \varepsilon R < |x| < 1/4.$$

We show that $\lim_{\varepsilon \downarrow 0} || I_2^{\varepsilon} ||_{L^1(B(0,1/4))} = 0$ and $\lim_{\varepsilon \downarrow 0} || I_1^{\varepsilon} ||_{L^1(B(0,1/4))} = \infty$ to complete the proof. Firstly, we estimate the term I_2^{ε} :

$$I_{2}^{\varepsilon}(x) \leq \frac{1}{(4\varepsilon R)^{n}} \int_{\mathbf{R}^{n} \setminus B(0,R)} |f(z)| dz = \frac{F(R)}{(4\varepsilon R)^{n}}$$

with $F(R) = \int_{\mathbf{R}^{n} \setminus B(0,R)} |f(z)| dz$.

Since F(R) is continuous, nonincreasing, and $\lim_{R\to\infty}F(R) = 0$, for sufficiently small ε , there exists $R = R(\varepsilon)$ such that

(2.4)
$$\frac{\{F(R)\}^{1/2}}{R^n} = \varepsilon^n.$$

By (2.4), we get
(2.5)
$$I_2^{\varepsilon}(x) \leq \frac{\{F(R)\}^{1/2}}{4^n} \to 0 \text{ as } \varepsilon \downarrow 0$$

and get $\lim_{\epsilon \downarrow 0} \| I_2^{\epsilon} \|_{L^1(B(0,1/4))} = 0.$

Secondly, we estimate the term
$$I_1^{\varepsilon}$$
. As
 $\left|\frac{x-\varepsilon z}{4|x|}\right| \leq \frac{|x|}{4|x|} + \frac{\varepsilon R}{4|x|} \leq \frac{1}{2},$
(2.6) $I_1^{\varepsilon} = \frac{1}{4^n |x|^n} \left| \int_{B^{(0,R)}} \phi(\varepsilon z) f(z) dz \right|$
 $= \frac{1}{4^n |x|^n} \left| \int_{B^{(0,R)}} f(z) dz \right|$ for $\varepsilon R \leq |x| \leq 1/4.$
for $\varepsilon R < 1/8.$

Now let $\varepsilon \downarrow 0$. For $\varepsilon R = \{F(R)\}^{1/2n} \to 0$ by (2.4),

(2.7)
$$\lim_{\varepsilon \downarrow 0} I_1^{\varepsilon} = \frac{1}{4^n |x|^n} \left| \int_{\mathbf{R}^n} f(z) dz \right|$$
$$= \frac{|C_t|}{4^n |x|^n} \text{ for } 0 \le |x| \le 1/4.$$
Since $\frac{1}{4^n |x|^n}$ is not in $I^1(\mathbf{R}^n)$ we

Since $\frac{1}{|x|^n}$ is not in $L^1(\mathbf{R}^n)$, we get a conclusion.

Next lemma is important to show Lemma 2.3 which is the key to show Theorem 1.3:

Lemma 2.2. For any function ψ in S, there exists a constant C depending only on ψ such that

(2.8)
$$| \psi(x) | \leq \frac{C}{1+|x|}$$

(2.9) $| \psi_{x_j}(x) | \leq \frac{C}{1+|x|^2}, j = 1,$

for $x \in \mathbf{R}^2$.

Proof. If ψ is in S, then there exists a function ω in T such that

(2.10)
$$\psi(x) = \frac{1}{2\pi} \int_{\mathbf{R}^2} \omega(y) \log |x - y| dy.$$

Notice that ω is in $C_0^{\infty}(\mathbf{R}^2)$, so there is a constant $\mathbf{R} = \mathbf{R}(\omega)$ such that $\operatorname{supp} \omega \subset B(0, \mathbf{R})$. Since ω is odd in x_2 , we get

$$(2.11) \ \psi(x) = \frac{1}{2\pi} \int_{B^{(0,R)}} \omega(y) \log |x-y| \, dy$$

$$= \frac{1}{2\pi} \int_{B_{+}(0,R)} \omega(y) \log \frac{|x-y|}{|x-y|} \, dy,$$

$$(2.12) \ \psi_{x_{1}}(x) = \frac{1}{2\pi} \int_{B^{(0,R)}} \omega(y) \frac{x_{1} - y_{1}}{|x-y|^{2}} \, dy$$

$$= \frac{2x_{2}}{\pi} \int_{B_{+}(0,R)} \omega(y) \frac{y_{2}(x_{1} - y_{1})}{|x-y|^{2} |x-\bar{y}|^{2}} \, dy,$$

$$(2.13) \ \psi_{x_{2}}(x) = \frac{1}{2\pi} \int_{B^{(0,R)}} \omega(y) \frac{x_{2} - y_{2}}{|x-y|^{2}} \, dy$$

$$= \frac{1}{\pi} \int_{B_{+}(0,R)} \omega(y) \frac{y_{2}(x_{2} - y_{2})}{|x-y|^{2}} \, dy,$$

$$\frac{y_{2}\{(x_{2} - y_{2})(x_{2} + y_{2}) - (x_{1} - y_{1})^{2}\}}{|x-y|^{2} |x-\bar{y}|^{2}} \, dy,$$

where $B_+(0, R)$ denotes $B(0, R) \cap \mathbf{R}_+^2$ and $\bar{y} = (y_1, -y_2)$. Now we show that ψ and ψ_{xj} is bounded in B(0, 2R) and that there exists a constant C such that

(2.14)
$$| \psi(x) | \leq C | x |^{-1},$$

 $| \psi_{x_j}(x) | \leq C | x |^{-2} \text{ for } | x | \geq 2R.$

The boundedness of ψ and ψ_j on B(0,2R) is obtained by the fact that $\log |x|$ and $|x|^{-1}$ are in $L^1_{loc}(\mathbf{R}^2)$:

(2.15)
$$|\psi(x)| \leq \frac{\sup |\omega|}{2\pi} \int_{B(0,R)} |\log |x-y|| dy$$

No. 8]

$$= C_{\omega} \int_{B(x,R)} |\log | y || dy$$

$$\leq C_{\omega} \int_{B(0,3R)} |\log | y || dy$$

$$= C_{\omega,R} < \infty,$$

(2.16) $|\psi_{x_{j}}(x)| \leq \frac{\sup |\omega|}{2\pi} \int_{B(0,R)} \frac{1}{|x-y|} dy$

$$\leq C_{\omega} \int_{B(0,3R)} |y|^{-1} dy$$

$$= C_{\omega,R} < \infty$$

for $|x| \leq 2R$. (Notice that $|y| \leq |x - y| + |x| \leq 3R$.)

Now we show (2.14) to complete the proof. We may assume $x_2 \ge 0$ to estimate ϕ , because ϕ is odd in x_2 . By this assumption, we get the following inequality:

(2.17)
$$1 \leq \frac{|x - \bar{y}|}{|x - y|} \leq \frac{|x - y| + |y - \bar{y}|}{|x - y|} \leq \frac{1 + \frac{2R}{|x| - R}}{|x - R} \leq 1 + \frac{4R}{|x|}$$

for $|x| \ge 2R$ and $|y| \le R$. The inequality (2.17) leads the estimate of ψ : (2.18) $|\psi(x)|$

$$\begin{split} &\leq \frac{1}{2\pi} \log \left(1 + \frac{4R}{|x|} \right) \int_{B_{+}(0,R)} \omega(y) \, dy \\ &\leq \frac{1}{2\pi} \frac{4R}{|x|} \log \left(1 + \frac{4R}{|x|} \right)^{\frac{|x|}{4R}} \| \omega \|_{L^{1}(B_{+}(0,R))} \\ &\leq \frac{2R}{\pi} \| \omega \|_{L^{1}(\mathbf{R}^{2})} |x|^{-1}. \end{split}$$

Notice that the inequality

(

$$\frac{|x|}{2} \le |x - y|, \frac{|x|}{2} \le |x - \bar{y}|$$

holds for $|x| \ge 2R$, $|y| \le R$. This inequality leads the estimate of ψ_{x_j} : (2.19) $|\psi_x(x)|$

$$\leq \frac{2 |x|}{\pi} \int_{B_{+}(0,R)} |\omega(y)| \frac{|y|}{|x-y|^{2}|x-\bar{y}|} dy$$

$$\leq \frac{16R ||\omega||_{L^{1}}}{\pi |x|^{2}},$$

$$2.20) |\psi_{x_{2}}(x)|$$

$$\leq \frac{1}{\pi} \int_{B_{+}(0,R)} |\omega(y)| \frac{2 |y|}{|x-y||x-\bar{y}|} dy$$

$$\leq \frac{8R \|\omega\|_{L^1}}{\pi |x|^2},$$

Combining the estimate (2.15), (2.16), (2.18), (2.19), and (2.20) leads the conclusion (2.8) and (2.9).

Now we are ready to show the key lemma.

Lemma 2.3. There exists a function ϕ in S such that

(2.21)
$$\int_{\mathbf{R}^2} \{ \phi_{x_1}(x) \}^2 \, dx \neq \int_{\mathbf{R}^2} \{ \phi_{x_2}(x) \}^2 \, dx.$$

Proof. Assume that the conclusion is not true, i.e.

(2.22) $\int_{\mathbf{R}^2} \{\phi_{x_1}(x)\}^2 dx = \int_{\mathbf{R}^2} \{\phi_{x_2}(x)\}^2 dx$ for any ψ in S. Let ψ is in S, and let $\psi^h(x) = \psi(x_1 - h, x_2)$. Then the function ψ^h and $\psi + \psi^h$ are in S. In fact, there exists a function ω in T such that $\psi = (-\Delta)^{-1}\omega$, and we can write $\psi^h = (-\Delta)^{-1}\omega^h$ and $\psi + \psi^h = (-\Delta)^{-1}(\omega + \omega^h)$, where $\omega^h(x) = \omega(x_1 - h, x_2)$. It is obvious that ω^h and $\omega + \omega^h$ are in T.

By the assumption (2.22), we get

$$(2.23) \quad \int_{\mathbf{R}^2} \{\phi_{x_1}(x)\}^2 \, dx = \int_{\mathbf{R}^2} \{\phi_{x_2}(x)\}^2 \, dx,$$
$$\int_{\mathbf{R}^2} \{(\phi^h)_{x_1}(x)\}^2 \, dx = \int_{\mathbf{R}^2} \{(\phi^h)_{x_2}(x)\}^2 \, dx,$$
$$\int_{\mathbf{R}^2} \{(\phi + \phi^h)_{x_1}(x)\}^2 \, dx = \int_{\mathbf{R}^2} \{(\phi + \phi^h)_{x_2}(x)\}^2 \, dx.$$
Combining the equalities (2.23) we get

Combining the equalities (2.23), we get

(2.24)
$$\int_{\mathbf{R}^2} \phi_{x_1}(x) (\phi^h)_{x_1}(x) dx$$
$$= \int_{\mathbf{R}^2} \phi_{x_2}(x) (\phi^h)_{x_2}(x) dx.$$

Now we integrate the equality (2.24) by h:

(2.25)
$$\int_{-\infty}^{\infty} \int_{\mathbf{R}^2} \psi_{x_1}(x) (\psi^h)_{x_1}(x) dx$$
$$= \int_{-\infty}^{\infty} \int_{\mathbf{R}^2} \psi_{x_2}(x) (\psi^h)_{x_2}(x) dx.$$
Notice that we can share the exc

Notice that we can change the order of integration by the estimate (2.9). Firstly, we compute the left term of (2.25):

(2.26)
$$\int_{-\infty}^{\infty} \int_{\mathbf{R}^{2}} \psi_{x_{1}}(x) (\psi^{h})_{x_{1}}(x) dx dh$$
$$= \int_{\mathbf{R}^{2}} \psi_{x_{1}}(x) \int_{-\infty}^{\infty} \psi_{x_{1}}(x_{1} - h, x_{2}) dh dx$$
$$= \int_{\mathbf{R}^{2}} \psi_{x_{1}}(x) \left[\psi(h, x_{2}) \right]_{-\infty}^{\infty} dx$$
$$= 0.$$

The equality is obvious by the estimate (2.8). Secondly, we compute the right term of (2.25):

(2.27)
$$\int_{-\infty}^{\infty} \int_{\mathbf{R}^2} \phi_{x_2}(x) (\phi^h)_{x_2}(x) dx dh$$
$$= \int_{\mathbf{R}^2} \phi_{x_2}(x) \int_{-\infty}^{\infty} \phi_{x_2}(x_1 - h, x_2) dh dx$$

Y. SHIMIZU

$$= \int_{-\infty}^{\infty} \left\{ \int_{\infty}^{\infty} \phi_{x_2}(x_1, x_2) \, dx_1 \right\}^2 \, dx_2$$

> 0.

The positivity of integrals is shown by computing the form of ψ_{x_2} . Notice that ψ_{x_2} is continuous, so it is sufficient to check that $\psi_{x_2}(x_1, 0)$ is not zero. By (2.13), we can write ψ_{x_2} as

(2.28)
$$\phi_{x_2}(x) = \frac{1}{\pi} \int_{B_+(0,R)} \omega(y) \\ \frac{y_2\{(x_2 - y_2) (x_2 + y_2) - (x_1 - y_1)^2\}}{|x - y|^2 |x - \bar{y}|^2} dy$$

where ω is a function in *T*. Putting $x_2 = 0$ in (2.28) leads

(2.29)
$$\psi_{x_2}(x_1, 0) = -\frac{1}{\pi} \int_{B_+(0,R)} \omega(y)$$

 $\frac{y_2}{(x_1 - y_1)^2 + y_2^2} dy.$

Since ω and the integral kernel are positive in $B_+(0, R)$, $\psi_{x_2}(x_1, 0)$ is always nonzero. The results of computation (2.26) and (2.27) leads a contradiction, and we get a conclusion of the lemma.

Proof of Theorem 1.3. Let ψ the function in S that satisfies (2.21). Let $\psi^{\varepsilon}(x) = \psi(x/\varepsilon)$.

Then

$$\{(\phi^{\varepsilon})_{x_{1}}(x)\}^{2} - \{(\phi^{\varepsilon})_{x_{2}}(x)\}^{2}$$
$$= \frac{1}{\varepsilon^{2}} \{(\phi_{x_{1}})^{2} - (\phi_{x_{2}})^{2}\} \left(\frac{x}{\varepsilon}\right)$$

and Lemma 2.1 is appliable. (Notice that $\psi_{x_1}^2 - \psi_{x_2}^2$ is in $L^1(\mathbf{R}^2)$: the estimate (2.9) leads this fact.)

References

- [1] L. C. Evans and S. Müller: Hardy spaces and the two-dimensional Euler equations with nonnegative volticity. J. Amer. Math. Soc., 7, 199-219 (1994).
- [2] S. Semmes: A primer on Hardy spaces and some remarks on a theorem of Evans and Müller. Commun. Partial Differential Equations, 19, 277-319 (1994).
- [3] J. M. Delort: Existence de napples de tourbillon en dimension deux. J. Amer. Math. Soc., 4, 553-586 (1991).
- [4] C. Fefferman and E. Stein: H^p Spaces of Several Variables. Acta. Math., 129, 137-197 (1972).
- [5] A. Torchinsky: Real-Variable Methods in Harmonic Analysis. Academic Press (1986).