A New Version of the Factorization of a Differential Equation of the Form $F(x, y, \tau y)=0$

By Raymond GERard*) and Hidetoshi TAhara**)

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1996)

In this note, we will consider equations of the form
$\left(\mathrm{E}_{0}\right) \quad F(x, y, \tau y)=0$,
where $F(x, y, X)$ is a holomorphic function defined in a neighborhood of the origin of $\left(\boldsymbol{C}_{x}\right)^{n} \times$ $\boldsymbol{C}_{y} \times \boldsymbol{C}_{X}$, and τ is a vector field

$$
\tau=\sum_{1 \leqslant i \leqslant n} \alpha_{i}(x, y) \partial / \partial x_{i}
$$

with coefficients $\alpha_{i}(x, y)(1 \leqslant i \leqslant n)$ meromorphic in x at most with only poles along a union of a finite number of hyperplanes (in $\left(\boldsymbol{C}_{x}\right)^{n}$) and holomorphic in y near the origin of $\left(\boldsymbol{C}_{x}\right)^{n} \times \boldsymbol{C}_{y}$.

If $F(x, y, X)$ is of finite order, say m, with respect to the variable X by Weierstrass preparation theorem $F(x, y, X)=0$ is equivalent to

$$
X^{m}+\sum_{1 \leqslant j \leqslant m} a_{j}(x, y) X^{m-j}=0
$$

and $\left(\mathrm{E}_{0}\right)$ is reduced to
(E) $(\tau y)^{m}+\sum_{1 \leqslant j \leqslant m} a_{j}(x, y)(\tau y)^{m-j}=0$.

In our previous paper [1] we have presented a factorization theorem for (E) which asserts that (E) is factorized into a product of equations of the form $\tau y=f(x, y)$ near the point $x=0$. In this note we will present a new version of this theorem.
§1. Factorization theorems. Let us consider the following differential equation:
(E) $\quad F(x, y, \tau y)=(\tau y)^{m}+\sum_{1 \leqslant j \leqslant m}$

$$
a_{j}(x, y)(\tau y)^{m-j}=0
$$

where $m \in \boldsymbol{N}^{*}(=\{1,2, \ldots\}), x=\left(x_{1}, \ldots, x_{n}\right)$ $\in \boldsymbol{C}^{n}, n \in \boldsymbol{N}^{*}, y \in \boldsymbol{C}$, and $a_{j}(x, y)(1 \leqslant j \leqslant m)$ are holomorphic functions defined in a neighborhood of the origin $(0,0)$ of $\left(\boldsymbol{C}_{x}\right)^{n} \times \boldsymbol{C}_{y}$. In (E), y $=y(x)$ is regarded as an unknown function of x and τ is a vector field of the form

$$
\tau=\sum_{1 \leqslant i \leqslant n} \alpha_{i}(x, y) \partial / \partial x_{i}
$$

whose coefficients $\alpha_{i}(x, y)(1 \leqslant i \leqslant n)$ are meromorphic in x at most with only poles along a union of a finite number of hyperplanes (in $\left(\boldsymbol{C}_{x}\right)^{n}$) and holomorphic in y in a neighborhood of the origin $(x, y)=(0,0)$ in $\left(\boldsymbol{C}_{x}\right)^{n} \times \boldsymbol{C}_{y}$.

[^0]Definition 1. We say that the transformation

$$
x=\left(x_{1}, \ldots, x_{n}\right) \rightarrow t=\left(t_{1}, \ldots, t_{n}\right)
$$

is of type ($G T$) if it is defined by the following: first we transform $x=\left(x_{1}, \ldots, x_{n}\right) \rightarrow \xi=\left(\xi_{1}\right.$, \ldots, ξ_{n}) by $x=A \xi$ for some $A \in G L(n, C)$ and then we transform $\xi \rightarrow t$ by
$\xi_{1}=\left(t_{1}\right)^{k}, \xi_{2}=\left(t_{1}\right)^{k} t_{2}, \ldots, \xi_{n}=\left(t_{1}\right)^{k} t_{n}$ for some $k \in \boldsymbol{N}^{*}$.

The result of our previous paper [1] is as follows:

Theorem 1 ([Theorem 2.2; 1]). After a suitable transformation $x \rightarrow t$ which is obtained by a composition of a finite number of transformations of type ($G T$), we can choose $c \in \boldsymbol{C}$ such that the following conditions hold:

1) $c=0$ or $|c|$ is sufficiently small;
2) by setting $y=c+z$ the equation (E) is decomposed in a neighborhood of the origin $(0,0) \in$ $\left(\boldsymbol{C}_{t}\right)^{n} \times \boldsymbol{C}_{\boldsymbol{z}}$ into the form
(1.1) $\quad \Pi_{1 \leqslant j \leqslant m}\left(\tau^{*} z-\varphi_{j}(t, z)\right)=0$,
where τ^{*} is the transform of τ by the transformation $x \rightarrow t$ and $\varphi_{j}(t, z)(1 \leqslant j \leqslant m)$ are holomorphic functions defined in a neighborhood of $(0,0) \in$ $\left(\boldsymbol{C}_{t}\right)^{n} \times \boldsymbol{C}_{2}$.

Note that the original equation (E) is considered near $(x, y)=(0,0)$; but the decomposition (1.1) is obtained in a neighborhood of $(x, y)=$ $(0, c)$ which may exclude the point $(x, y)=$ $(0,0)$ in case $c \neq 0$. Therefore, if we want to study the behaviour of the solutions of (E) near the origin $(0,0)$ we must fill some gaps between (E) and (1.1).

To fill up the gap we will present here a new version of factorization theorem. In our new result, instead of using transformations of type (GT) and a shift $y=c+z$ we will use the following transformation:

Definition 2. We say that the transformation
$(x, y)=\left(x_{1}, \ldots, x_{n}, y\right) \rightarrow(t, z)=\left(t_{1}, \ldots, t_{n}, z\right)$ is of type ($N G T$) if it is defined by the follow.
ing: first we transform $x \rightarrow t$ by a transformation of type $(G T)$, and then we transform $(t, y) \rightarrow$ (t, z) by $y=\left(t_{1}\right)^{p} z^{q}$ for some $p, q \in N^{*}$.

We have the following:
Theorem 2. After a suitable transformation $(x, y) \rightarrow(t, z)$ which is obtained by a composition of a finite number of transformations of type ($N G T$), the equation (E) is decomposed in a neighborhood of the origin $(0,0) \in\left(\boldsymbol{C}_{t}\right)^{n} \times \boldsymbol{C}_{z}$ into the form
$\left(\mathrm{E}^{*}\right) \quad \Pi_{1 \leqslant j \leqslant m}\left(\tau^{*} z-\varphi_{j}(t, z)\right)=0$,
where $\tau^{*} z$ is the transform of τy by the transformation $(x, y) \rightarrow(t, z)$ and $\varphi_{j}(t, z)(1 \leqslant j \leqslant m)$ are holomorphic functions defined in a neighborhood of $(0,0) \in\left(\boldsymbol{C}_{t}\right)^{n} \times \boldsymbol{C}_{z}$.

Remarks 1. $\tau^{*} z$ has the form
$\tau^{*} z=\sum_{1 \leqslant i \leqslant n} \beta_{i}(t, z) \partial z / \partial t_{i}+\beta_{0}(t, z) z$,
where $\beta_{i}(t, z)(0 \leqslant i \leqslant n)$ are meromorphic in t with only poles along a union of a finite number of hyperplanes (in $\left(\boldsymbol{C}_{t}\right)^{n}$) and holomorphic in z in a neighborhood of $(0,0) \in\left(\boldsymbol{C}_{t}\right)^{n} \times \boldsymbol{C}_{z}$.
2. If τ has the form $\tau=\sum_{1 \leqslant i \leqslant n} \alpha_{i}(x) \partial / \partial x_{i}$, then

$$
\tau^{*} z=z^{q-1} \times\left(\sum_{1 \leqslant i \leqslant n} \beta_{i}(t) \partial z / \partial t_{i}+\beta_{0}(t) z\right)
$$

for some $q \in \boldsymbol{N}^{*}$.
3. If $n=1$ and $\tau=x(d / d x)$, then $\tau^{*} z=$ $t^{p} z^{q-1}(a t(d z / d t)+b z)$ for some positive numbers a and b.
§2. Sketch of proof. In the proof of Theorem 1 in [1], we used an induction argument. If we notice the lemma given below, we can prove Theorem 2 by induction on m in the same way.

Let $m \geqslant 2$ be an integer, let $a_{j}(x, y) \quad(2 \leqslant j$ $\leqslant m$) be holomorphic functions defined in a neighborhood of the origin $(0,0) \in\left(\boldsymbol{C}_{x}\right)^{n} \times \boldsymbol{C}_{y}$, and

$$
P(x, y, X)=X^{m}+\sum_{2 \leqslant j \leqslant m} a_{j}(x, y) X^{m-j}
$$

Lemma. If $a_{j}(x, y) \neq 0$ for some $2 \leqslant j$ $\leqslant m$, we can find positive integers $h, r \in \boldsymbol{N}, a$ transformation $(x, y) \rightarrow(t, z)$ of type $(N G T)$, and a function $g(t, z, X)$ which satisfy the following conditions:

1) $g(t, z, X)$ is a polynomial of degree m in X with coefficients holomorphic in (t, z) in a neighborhood of $(t, z)=(0,0)$;
2) $g(0,0, X)=0$ has at least two distinct roots;
3) $P(x, y, X)=\left(t_{1}\right)^{n m} z^{r m} \times g\left(t, z, X /\left(\left(t_{1}\right)^{n}\right.\right.$ $\left.z^{r}\right)$).

Proof of lemma. Put $J=\left\{j ; a_{j}(x, y) \neq 0\right.$,
$2 \leqslant j \leqslant m\}(\neq \varnothing)$. Denote by d_{j} the valuation of $a_{j}(x, y)$ in y. If $j \in J$, we have $d_{j}<\infty$ and we can write

$$
\begin{gathered}
a_{j}(x, y)=y^{d_{j}}\left(a_{j, 0}(x)+y b_{j}(x, y)\right) \text { with } \\
a_{j, 0}(x) \equiv 0
\end{gathered}
$$

For $j \in J$, we denote by α_{j} the valuation of $a_{j, 0}(x)$ in x and by β_{j} the valuation of $b_{j}(x, y)$ in x. Put

$$
\begin{aligned}
\sigma & =\min \left\{d_{j} / j ; j \in J\right\}(<\infty) ; \\
J^{*} & =\left\{j ; j \in J \text { and } d_{j} / j=\sigma\right\}(\neq \varnothing) ; \\
s & =\min \left\{\alpha_{j} / j ; j \in J^{*}\right\}(<\infty) ; \\
J_{0} & =\left\{j ; j \in J^{*} \text { and } \alpha_{j} / j=s\right\} \quad(\neq \varnothing) ; \\
\mu & =\max \left\{j ; j \in J_{0}\right\}
\end{aligned}
$$

It is easy to see that $d_{j}=\sigma j$ for $j \in J^{*}, d_{j}>\sigma j$ for $j \in J \backslash J^{*}, \alpha_{j}=s j$ for $j \in J_{0}$, and $\alpha_{j}>\operatorname{sj}$ for $j \in J^{*} \backslash J_{0}$. Since $\mu \in J_{0}, a_{\mu, 0}(x)$ is expressed in the form

$$
\begin{gathered}
a_{\mu, 0}(x)=\sum_{|\nu| \geqslant s \mu} a_{\mu, 0, \nu} x^{\nu} \text { and } \\
\sum_{|\nu|=s \mu} a_{\mu, 0, \nu} x^{\nu} \neq 0 .
\end{gathered}
$$

Therefore, after a linear change of variables in x we may assume that $a_{\mu, 0,\left(s \mu_{0}, \ldots, 0\right)}^{*} \neq 0$.

Let us choose $p \in \boldsymbol{N}^{*}$ so that the following conditions are satisfied:

1) $\sigma p \in N^{*}$;
2) for $j \in J^{*}, p \geqslant k\left(s j-\beta_{j}\right)$;
3) for $j \in J \backslash J^{*}, p \geqslant k\left(s j-\alpha_{j}\right) /\left(d_{j}-\sigma j\right)$;
4) for $j \in J \backslash J^{*}, p \geqslant k\left(s j-\beta_{j}\right) /\left(d_{j}-\sigma j\right.$ $+1)$.
Choose also $q \in \boldsymbol{N}^{*}$ so that $\sigma q \in \boldsymbol{N}^{*}$, and $k \in$ \boldsymbol{N}^{*} so that $s k \in \boldsymbol{N}^{*}$. By using these p, q, k, we first transform $x \rightarrow t$ by

$$
x_{1}=\left(t_{1}\right)^{k}, x_{2}=\left(t_{1}\right)^{k} t_{2}, \ldots, x_{n}=\left(t_{1}\right)^{k} t_{n}
$$

and then we put $y=\left(t_{1}\right)^{p} z^{q}$. Denote by $A_{j}(t, z)$ the transform of $a_{j}(x, y)$ for $j \in J$; then $A_{j}(t, z)$ is expressed in the form

$$
A_{j}(t, z)=z^{q d_{j}}\left(A_{j, 0}(t)+z^{q} B_{j}(t, z)\right) \text { with } A_{j, 0}(t) \equiv \equiv 0
$$

It is easy to see that the valuation of $A_{j, 0}(t)$ in t is equal to or greater than $k \alpha_{j}+p d_{j}$ and the valuation of $B_{j}(t, z)$ in t is equal to or greater than $k \beta_{j}+p d_{j}+p$. If we put $h=\sigma p+s k$ and $r=\sigma q$, we can see:
i) if $j \in J_{0}$ we have $q d_{j}=r j, k \alpha_{j}+p d_{j}=$ $h j$ and $k \beta_{j}+p d_{j}+p \geqslant h j$;
ii) if $j \in J^{*} \backslash J_{0}$ we have $q d_{j}=r j, k \alpha_{j}+$ $p d_{j}>h j$ and $k \beta_{j}+p d_{j}+p \geqslant h j$;
iii) if $j \in J \backslash J^{*}$ we have $q d_{j}>r j, k \alpha_{j}+$ $p d_{j} \geqslant h j$ and $k \beta_{j}+p d_{j}+p \geqslant h j$.
Moreover we have $\left.\left(A_{\mu, 0}(t) /\left(t_{1}\right)^{h \mu}\right)\right|_{t=0}=a_{\mu, 0,(s \mu, 0, \ldots, 0)}$ $\neq 0$.

Now, let us define $g(t, z, X)$ by the follow-
ing:
$g(t, z, X)=X^{m}+\sum_{j \in J}\left(A_{j}(t, z) /\left(\left(t_{1}\right)^{h j} z^{r j}\right)\right) X^{m-j}$. Then by i), ii) and iii) we see that $g(t, z, X)$ satisfies the conditions 1) and 3) in the lemma. Note that $g(0,0, X)$ is expressed in the form

$$
g(0,0, X)=X^{m}+\sum_{j \in J_{0}} C_{j} X^{m-j}
$$

for some $C_{j} \in C\left(j \in J_{0}\right)$ and that $C_{\mu}=$ $a_{\mu, 0,(s \mu, 0, \ldots, 0)} \neq 0$. Since $\mu=\max \left\{j ; j \in J_{0}\right\}$ and J_{0} $\subset\{2, \ldots, m\}$ hold, we can easily see the condition 2) in the lemma.
§3. An application. Let $n=1, x \in C, y$ $\in \boldsymbol{C}, \theta=x(d / d x)$, and let us consider the following ordinary differential equation:
(e) $(\theta y)^{m}+\sum_{1 \leqslant j \leqslant m} a_{j}(x, y) y^{j}(\theta y)^{m-j}=0$, where $a_{j}(x, y)(1 \leqslant j \leqslant m)$ are holomorphic functions defined in a neighborhood of the origin $(0,0)$ of $\boldsymbol{C}_{x} \times \boldsymbol{C}_{y}$. In (e), $\boldsymbol{y}=\boldsymbol{y}(x)$ is regarded as an unknown function. By applying Theorem 2 we get

Proposition. By a transformation $x=t^{k}$ and $y=t^{p} z^{q}$ for some $k, p, q \in \boldsymbol{N}^{*}$, the equation (e) is reduced in a neighborhood of the origin $(0,0) \in \boldsymbol{C}_{t}$ $\times \boldsymbol{C}_{z}$ into m equations of the following form:
(3.1) $t(d z / d t)=\varphi_{j}(t, z) z, \quad(1 \leqslant j \leqslant m)$, where $\varphi_{j}(t, z)(1 \leqslant j \leqslant m)$ are holomorphic functions defined in a neighborhood of $(0,0) \in \boldsymbol{C}_{t} \times$ C_{z}.

In general, an equation of the form $t(d y / d t)$ $=f(t, y)$ is called the Briot-Bouquet equation if $f(0,0)=0$ is satisfied. If this equation has a holomorphic solution, we can reduce this into an equation of the form $t(d z / d t)=\varphi(t, z) z$.

Thus, the equation (3.1) is a particular case of the Briot-Bouquet equation and we already know many results on the equation (3.1) (for example, see [2], [3]).

Proof of proposition. Let us write the equation (e) in the form
(e_{1}) $(\theta y / y)^{m}+\sum_{1 \leqslant j \leqslant m} a_{j}(x, y)(\theta y / y)^{m-j}=0$, and let us apply Theorem 2 to this form. Since we are considering the case $n=1$, a composition of a finite number of transformations of type ($N G T$) is also written as $x=t^{k}, y=t^{p} z^{q}$ for some $k, p, q \in \boldsymbol{N}^{*}$. Then

$$
(\theta y / y)=(q t(d z / d t)+p z) /(k z)
$$

and therefore by Theorem $2\left(\mathrm{e}_{1}\right)$ is decomposed into

$$
\begin{aligned}
& \Pi_{1 \leqslant j \leqslant m}(\\
&-(q t(d z / d t)+p z) /(k z)) \\
&\left.-\psi_{j}(t, z)\right)=0
\end{aligned}
$$

This implies that (e) is reduced to

$$
\begin{aligned}
t(d z / d t)= & \left(-(p / q)+(k / q) \psi_{j}(t, z)\right) z \\
& (1 \leqslant j \leqslant m)
\end{aligned}
$$

References

[1] R. Gérard and H. Tahara: On the factorization of an equation of the form $F(x, y, \tau y)=0$ where τ is a meromorphic vector field. Structure of solutions of differential equations, Katata/Kyoto, 1995, World Scientific, 151-167 (1996).
[2] R. Gérard and H. Tahara: Singular nonlinear partial differential equations. Vieweg (1996).
[3] M. Hukuhara, T. Kimura, and T. Matuda: Equations différentielles ordinaires du premier ordre dans le champ complexe. Publ. of Math. Soc. Japan (1961).

[^0]: *) Institut de Recherche Mathématique Alsacien, Université Louis Pasteur, France.

 * *) Department of Mathematics, Sophia University.

