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Transcendence of Jacobi’s Theta Series
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(Communicated by Shokichi IYANAGA, M.J. A., Nov. 12, 1996)

1. Introduction. This note will show that
a recent theorem of Nesterenko ([6], [7]) has an
interesting consequence on the independence
problem of the values which Jacobi’'s theta func-
tions take at algebraic numbers as formulated in
the theorem stated below.

Let us recall some known facts. As usual we
set

E,(@ =1—24 X o,(mq",
n=1
E, (@) =1+ 240 Z o) q",

Es(g) =1 — 504 Z os(n)q",

where o,(n) = =, d". Mahler [5] proves that
E,(@), E, (@), E,(¢) are algebraically indepen-
dent over C(g). Letting “’” denote the derivation

d
q d_q we have

1 1
E; =15 (E; — E), E{= 5 (E,E, — Ey),

E;= % (E,Es— ED).
(cf. Lang [4]). By the use of
_ ol s e o E
A - 1728 (E4 - Eg), ]— _A—’
the modular function j(z) is described as j(z) =
J(@), where g = ¢™" (cf. Apostol [2]). By the

equalities

S _E T 2E, |, 1E/
J=TET E+3E +3E,

Es€ Q(J,]’,J") and hence Q(E,, E,, Ey) =

QU J, .

Nesterenko’s theorem ([6], [7]).
<lal| <1 then

trans.degoQ(a, E,(a), E,(a), Es(a)) = 3.
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Corollary. Ifa€Q, 0 <|al| <1 then each
of the following sets
1) E,(), E,(@), Es()
1s algebraically independent.
Here we investigate the values which Jaco-
bi’s theta functions

b, =1+2>¢", 6=1+23 (—1"¢",
n=1 n=1

2) J(@), J' (), J" ()

02 — 2q1/4 2 qn(n—l)

n=1

take at algebraic numbers. Now we have

Theorem. Let y = y(q) denote any one of 0,
6,0, fac Q,0<|al<1 then y(a), y'(a),
y” (@) are algebraically independent.
We remark that y is known to satisfy an algeb-
raic differential equation of the third order de-
fined over @ (cf. Jacobi [3]).

2. Proof of the theorem. Let

E(q) — q1/24 i (1 _ qn).

n=1
This is known to satisfy E(g)** = 4(g).

Lemma.
6, = E(¢9) °E(@)°E(¢")*, 6 = E(’E(¢) ",
6, = 2E(¢®) " E(g"’.
Proof. Taking z =1 in Jacobi's triple pro-
duct identity (Apostol [4, Th. 14.6))

i qnzz H a- q2n) a+ q2n 12)
Nn=—c0 n=
(1 211 lz—l),
we have
6, = S =1 a-¢a+ ¢
n=-—co n=1
2n 7y 2
hnd - +
_pa-da+q

L 1+ an)z
_ ﬁ ( _ an)s(l _ an)z
nel (1 _ q4n)2(1 _ qn)z *
Hence the first equality follows.

n

I

In the case

where z = — 1 we have
0 — Z (_ 1)” n2 H (1 . an) (1 _ q2n—1)2
Nn=-—00
_ a-4¢ma- q) _ 7 a—q¢"?°
n=1 a-— an) _ln—l 1 — q2n
and the second. If we let 2 = g ~ then
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Z qn(n—l) — H (1 _ an) (1 + q2n-2)

n=—oco n=1
n=1
I _ An _ An
—onq4 q)(lzn q)
n=1 1— q
The left hand side is easily seen to be 2 X

n=1
q"("_l), which implies the third equality and com-

pletes the proof.

Now let us turn to the proof of the theorem.
We first note that K = Q(J(q), J' (@), J"(¢)) =
Q(E,(q), E,(¢), Es(9)) is a differential field.
Since J(¢®) is algebraic over Q(J(g)), hence over

2
K, so is each of J(g%), J'(¢") = ‘Izij_(gz_l =3

2
J@®), J7(¢®). Therefore each of qEz(qz),
E,(q"), E,(¢®) is algebraic over K. This shows
A(q4) as well as 4(¢®) algebraic over K. It fol-
lows that each of E(q), E(¢%), E(¢") is algeb-
raic over K, and so is each of 6,(q), 6(q), 6,(¢).
Let y be any one of 6,(¢), 6(g), 6,(¢). The func-
tions y, y’, y” are all algebraic over K. By the
corollary in the introduction Q(E,(a), E,(a),
E,(a)) has transcendence degree 3. According to
Weil [9, p. 28, Th. 3], the specialization (guaran-
teed by the convergence of each function)

(EZ? E4’ Es» Y, y,’ y”) -
(Ey)(), E,(), Es(@), y(), y' (@), y' ()

is generic over @, that is, Q (E,, E,, E, ¥, ¥/,
y”) and Q (E,(a), E,(), Ei(), y(a), y' (o),
y”(a)) are isomorphic. According to Nishioka [8],
Y, Yy, y’ are algebraically independent over Q,
which shows the function values y(a), y'(a),
y” (@) algebraically independent and completes
the proof.

Remark 1. As a corollary to Neterenko’s
theorem, we obtain the following If a € C,
o< |a| < 1 then

trans.degoQ(a, E,(a), E'(a), E"(a)) 2= 3.
In fact, let F = Q(«, E(a), E’(a), E"(a)). Not-
ing E(a) # 0, and

E'(q) —i(1—24§ 4
n=1]1 —g¢q

n

1
Elq — 24 > = 24 £:(@,
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we have E,(a), E;(@) € F, hence E,(a) € F.
From

E@™ = T2 (E(@)° — Ey(@)")

it follows that E4(a) is algebraic over F. This
implies

trans.degoF =

trans.degqoQ(a, E,(a), E, (@), Ei(a)) = 3.

Remark 2. After having submitted the pap-

er we were informed by D. Bertrand that in
“Theta functions and transcendence” to appear in
The Ramanujan J. Math. he proved a stronger re-
sult: trans. degqQ (a, y(@), y' (@), y"(a)) = 3
for &« € C with 0 < | a| < 1, the proof of which
depends upon a series of explicit relations be-
tween modular functions and theta functions. The
method utilized in this paper is simpler than his.
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