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Abstract :

In this paper, we prove some pinching theorems with respect to the scalar

curvatures of 4-dimensional projectively flat (conharmonically flat) totally real minimal sub-
manifolds in a 16-dimensional quaternion projective space.
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1. Introduction. A quaternion Kaehler man-
ifold is defined as a 4n-dimensional Riemannian
manifold whose holonomy group is a subgroup of
Sp(1) - Sp(m). A quaternion projective space
QP"(0) is a quaternion Kaehler manifold with
constant quaternion sectional curvature ¢ > 0.

Let M be an n-dimensional Riemannian man-
ifold and J : M— QP"(¢) an isometric immersion
of M into QP"(c). If each tangent 2-subspace of
M is mapped by J into a totally real plane of
QP"(c), then M is called a totally real subman-
ifold of QP"(c). Funabashi [3], Chen and Houh
[1] and Shen [6] studied this submanifold and got
some curvature pinching theorems. The purpose
of this paper is to give some characterizations of
4-dimensional projectively flat (conharmonically
flat) totally real minimal sub-manifolds in
QP* (o).

2. Preliminaries. Let QP"(c) denote a 4n-
dimensional quaternion projective space with
constant quaternion sectional curvature ¢ > 0
and M be a totally real minimal submanifold in
QP"(c) of dimension #. In this paper we will use
the same notations and terminologies as in [1]. It
was proved in [1] that the second fundamental
form of the immersion satisfies
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this together with the equation of Gauss, implies
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Similarly, we have
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Combining (2.1) with (2.2), (2.3) and |of = ¢

n(n — 1) — p, we obtain
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3. Projectively flat totally real minimal sub-
manifold. Suppose M is an #-dimensional com-
pact oriented totally real minimal submanifold in
QP"(c), if M is projectively flat, then its projec-
tive curvature tensor P satisfies
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= 0, where R, S, g are the curvature tensor,
Ricci tensor and Riemannian metric of M respec-
tively. From (3.1) we have
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which, together with (2.4) asserts
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Taking the integrals of the both sides of (3.3)
and using Green’s theorem, we have
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On the other hand, by the Gauss-Bonnet
theorem, when # = 4, the Euler number x (M) of




No. 10]

M is given by

(3.5) x (M) = :
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From (3.2), (3.4) and (3.5) we get
(3.6) 2 f IVelFdV+ 327 (M)
M

 olo-3av

when x (M) is nonnegative, from o > 0 we can

5
derive o = 5 ¢, then from Theorem 4 of [1] or

Remark 3.1 of [5], we can obtain the following
theorem.

Theorem A. Let M be a 4-dimensioanl
compact oriented projectively flat totally real
minimal submanifold in QP*(¢). If M has non-
negative Euler number and the scalar curvature
o > 0, then M is totally geodesic.

4. Conharmonically flat totally real minimal
submanifold. Suppose that M is an #n-dimen-
sional compact oriented totally real minimal sub-
manifold in QP"(¢). If M is conharmonically flat,
then its conharmonic curvature tensor c* satis-
fies

def
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From (4.1) we can get
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which, together with (2.4) asserts

_1 e _nt+2 2

2 2
n—2P°

~ G+ Do Ivol

Taking the integrals of the both sides of (4.3)
and using Green’s theorem, we have
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when # = 4, from (3.5), (4.3) and (4.4) we have
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So we can get the following Theorem immediate-
ly.

Theorem B. Let M be a 4-dimensional
compact oriented conharmonically flat totally real
minimal submanifold in QP*(¢c). If M has non-
negative Euler number and the scalar curvature

5
o of M satisfies 0 < p < % then either p = 0
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or p = 1_6
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