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Abstract:

We consider an elliptic curve E with a modular parametrization ¢ : X,(N) —

E. Under some conditions the images of Heegner points on X,(IN) by ¢ are of infinite order.

1. Introduction. Let E be a modular ellip-
tic curve of conductor N defined over @ with a
parametrization ¢ :X,(N)— E mapping the
cusp °© of X,(N) to the origin of E which we
consider as given in the following. Let E, be the
group of n-division points of E for an integer #.

If E has no complex multiplication over C,
then Serre [11] has shown that

Gal(Q(Eg)/Q) = AUtFI(Eg) = GL(Z, Fé)
for almost all primes £ (i.e., for all but a finite
number of primes).

Definition. (a) If E has no complex multi-
plication, we define a finite set S; of rational
primes by

Sg = {¢; Gal(Q(E,)/Q) # AutFl(El)}

Uf{s;¢|N}YU{2,3).
(b) If E has complex multiplication, we define a
finite set Sg of rational primes by
S.:={¢;¢|NYU{2,3}.

Remark. For a semi-stable (modular) ellip-
tic curve E without complex multiplication, we
can use [11, Corollaire 1,p.308] to determine the
set Sg.

Definition. Let K be an imaginary quadra-
tic field of discriminant —D which satisfies the
following two conditions:

(1) Each prime factor £ of D is not contained
in Sg.

(2) Each prime factor £ of N splits in K.

There are infinitely many imaginary quadra-
tic fields K which satisfy these two conditions
and whose class number kg is greater than the
degree deg(¢). From the second condition, there
is an ideal n of the integer ring Of of K satis-
fying Oy /n = Z/NZ.

From now on we fix an imaginary quadratic
field K with discriminant —D which satisfies
these two conditions.

Let [a] be the class of K

ideal which

contains an ideal a. Let x; = (O, 1, [al) be the
complex point (C/a, C/an™") of X,(N) [2], [4].
Let K, be the Hilbert class field of K. Then the
theory of complex multiplication implies that the
point x; is rational over K;. Following [4], x; is
called a Heegner point on X,(N) and its image
¥, = ¢(x,) in E(K,) is called a Heegner point on
E.

The following is our result with respect to
Y-

Theorem 1.1. If h, > deg(y),
Heegner point y, has infinite order.

Kurcéanov [9, Proposition, p.323] has proved
that Heegner points have infinite orders in the
case that D is a prime. Our theorem generalizes
Kuréanov’'s Proposition.

Let yx be Trg 4 (y,) contained in E (K),
where the sum is taken with respect to the group
law on E. Gross and Zagier [3] have proved that
if y; has infinite order, then L'(E/K, 1) # 0.
Kolyvagin [5], [6], [7], [8] has proved that if y,
has infinite order, then the Mordell-Weil group
E(K) has rank one and the Tate-Shafarevich
group III(E /K) is finite.

The following is our result with respect to

then the

Yx-

Theorem 1.2.
Yg € E(Q.

We denote by 2z° the complex conjugate of a
point z in E(C).

Corollary 1.3.
nite order.

2. Proof of theorems.
is known to specialists.

Lemma 2.1. K(x,) = K,.

Proof. For an ideal a of Ok [12, Theorem
5.7 (iv)] asserts K(j(a)) = K,. Since the function
field of X,(N) over Q is Q(j(2), j(N2) [12,
p.157]. From [4,1.2), ifa = Z7z + Z1, Im(z) > 0,

If yx is a torsion point, then

If yg # Yg, then yyx has infi-

The following lemma
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then we have

an”' = Zr + Z(1/N) = ZN7 + Z1.
Hence the coordinates j(a) = j(z) and j(an™") =
J(N7) of x, generate K, over K. ]

Lemma 2.2. If h, > deg(e), then y, &
E(K).
Proof. 1f y, € E(K), then y; =y, for all

o € Gal(K,/K). Since ¢ is defined over @ and
¥, = ¢(x,), we have for each 0 € Gal(K,/K)

o) = (px))’ =y = y,.
Thus z{ € ¢ '(y,) for each ¢ € Gal(X,/K),
hence

{z];0 € Gal(K,/K)} € ¢ (y).

Because of Lemma 2.1 z,(c € Gal(K,/K)) are
mutually distinct. Hence we have

he =1{x};0€ Gal(K,/K)} |

<] oMy | < deg(y).

This contradicts with the assumption. O

Note. Assume that E has complex . multi-
plication. Let 0 be Endg(E), then 6 @, Q is an
imaginary quadratic field k with discriminant d,
and O is an order of k. Shimura [13] has shown
that d, divides the level N and Endg(E) =
End,(E). As E is defined over @, the class num-
ber of O is one. There are thirteen orders with
class number one whose conductors are one, two
or three [11, Example, p.295]. Let 0, be the max-
imal order of k, then 0 ®,Z,= 0, K, Z, for
each prime £ > 3.

Lemma 2.3. Assume that each prime factor of
D is not contained in Sz, then

Etors(Kl) = Etors(Q)'

Proof. Let y € E,,,;(K,). Suppose that y
has a finite order m. '

Let us consider the case;

(i) where there is a prime factor £ of m such that
b &S,

Let z be m/¢)y in E(K,), then 2z is a point
of order £.

(a) Assume that E has no complex multiplication.

Since ¢ & Sz, we have Gal(Q(E,)/Q) =
Aut, (E,), which is transitive on all points of
order £ Thus {z°;0 € Gal(Q(E,) /Q)} gener-
ates E, as module.

For 0 € Gal(Q(E,) /Q), we extend 0 to an
automorphism of the algebraic closure of @ in C
denoted by the same o. Since the extension K,/ @
is normal, we have K, = K, Hence 2°€
(E(K))° = E(K]) = E(K)). Thus we have E,
c E(K).
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(b) Assume that E has complex multiplication by
0 as in Note.

We use the notations in Note. It is known
that E, = Oz + 0z°. Since 0z S E(kK)) and E,
= E, we have

0z2° = (02)° < (E(kK))® = E(kK)D")

= E(kK)).
Therefore we have E, = 0z + 02° S E(kK)).

Summing up all cases, we have EI -
E(K) or E, S E(kK)). Using the nondegeneracy
of the Weil-pairing on E, we have {,=
exp(2rmi/¥¢) € K, or kK,. Hence Q({,) € K, or
kK,. Since d, devides N and ¢ & S;, the rami-
fication index of £ in K, or in kK, is one or two.
However the ramification index of £ in Q({,) is
¢ — 1 = 4. This is a contradiction.

The other is the case;

(i) where each prime factor £ of m is contained
in Sg.

We include the case of m = 1. Let L be
Q(E,). Since ord(y) =m,y € E, thus y €
EW).

We claim that L N K, = Q. In fact any
ramified prime ¢ in K;/Q divides D, which is
not contained in Sz Any ramified prime £ in
L/@Q divides N or m, which is contained in S;.
Hence L N K, is unramified over Q.

Asy € E(K)) N E(L), we have y € E(Q).

]

Proof of Theorem 1.1. Lemma 2.2 and Lem-
ma 2.3 imply Theorem 1.1. ]

Proof of Theorem 1.2. Since yx € E(K),
Lemma 2.3 implies Theorem 1.2. O]

Remark 2.4. Let K, be the ring class field
with a conductor f. If each prime factor of f is
not contained in Sg, then we have theorems for
K, instead of K, by a suitable reformulation.

3. Applications and remark. Let —e =
+ 1 denote the sign in the functional equation
for L-function L(E/Q, s). Let [0] be the O-cusp
of X,(N). In [1] Birch has proved the following:

Lemma 3.1.

yr = ey + heo([0]).
Corollary 3.2. Ife = —1, then
Yg F Yg © Yx has infinite order.

Proof. = follows from Corollary 1.3.

Drinfeld-Manin’s theorem asserts that the
image of [0], in the jacobian variety, is a torsin
point. If ¥ = yx, then we have

2yx = hgo([0D).
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Hence yy is a torsin point. ]
Corollary 3.3. If e = 1, then hze([0]) =0
and yg = Yx.

Proof. Assume that yg # y,. Let E(K)™ =
{(z€ E(K) ;2" = —2z}. Corollary 1.3 implies
that yx has infinte order. In the case of ¢ =1,
Kolyvagin [5], [6], [7], [8] has proved that
rank(E(K)™) = 0 and rank(E(Q)) = 1.

However the point yx — yg is contained in
E(K)™ and it has infinite order. Thus we have
Yx = Yk O

Remark 3.4. In the case where E has no
complex multiplication we can use the galois
group structure in the proof of Lemma 2.3.
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