Remarks on the Periodic Solution of the Heat Convection Equation in a Perturbed Annulus Domain

By Kazuo Ōeda
Faculty of Science, Japan Women's University
(Communicated by Kiyosi ITÔ, M. J. A., Feb. 12, 1997)

1. Introduction. We consider the heat convection equation in a time-dependent bounded domain $\Omega(t)$ of \boldsymbol{R}^{2} which varies periodically with period T_{p}.

$$
\begin{align*}
& \text { (1) }\left\{\begin{array}{cr}
u_{t}+(u \cdot \nabla) u=-(\nabla p) / \rho+ \\
\left\{1-\alpha\left(\theta-T_{0}\right)\right\} g+\nu \Delta u & \text { in } \hat{\Omega}, \\
\operatorname{div} u=0 & \text { in } \hat{\Omega}, \\
\theta_{t}+(u \cdot \nabla) \theta=\kappa \Delta \theta & \text { in } \hat{\Omega}, \\
\text { (2) }\left.u\right|_{\partial \Omega(t)}=\beta(x, t),\left.\theta\right|_{\Gamma_{0}}=T_{0}>0,\left.\theta\right|_{\Gamma(t)}=0 \\
\text { for any } t \in(0, \infty),
\end{array}\right. \tag{1}\\
& \begin{array}{ll}
\text { (3) } u\left(\cdot, t+T_{p}\right)=u(\cdot, t), \theta\left(\cdot, t+T_{p}\right)=\theta(t), \\
& \text { in } \Omega(0),
\end{array}
\end{align*}
$$

where $\hat{\Omega}=\cup_{0<t<\infty} \Omega(t) \times\{t\}$ and $\partial \Omega(t)$ (the boundary of $\Omega(t)$) consists of two smooth components, i.e. $\partial \Omega(t)=\Gamma_{0} \cup \Gamma(t)$, and Γ_{0} is the inner boundary which bounds a compact set K, while the outer boundary $\Gamma(t)$ is a smooth one with respect to both x and t. We assume that the set K includes the origine O and $\Omega(t)$ is included in a ball $B_{d}=B(O, d / 2)$. We put $B=B_{d} \backslash K$. Moreover, $u=u(x, t)$ is the velocity vector, $p=p(x, t)$ is the pressure and $\theta=\theta(x, t)$ is the temperature; $\nu, \kappa, \alpha, \rho$ and $g=g(x)$ are the kinematic viscosity, the thermal conductivity, the coefficient of volume expansion, the density at $\theta=T_{0}$ and the gravitational vector, respectively. (Hereafter, we denote the heat convection equation by HC equation).

As for the 3 -dimensional problems, we proved the existence, uniqueness and the stability of the periodic strong solutions in [9] and [10] when the data are small, while Morimoto [8] obtained the periodic weak solutions. Recently, Inoue-Ôtani [6] studied and got the periodic strong solution under their small type conditions when the space dimention $n=2$ or 3 (in timedependent domains). On the other hand, for the 2 -dimensional cases, we obtained, in [14], a sufficient condition for the existence of the periodic strong solution in the form of a certain relation between given data including a time period, but
not including the magnitude of b which is an extension of the boundary function $\beta(x, t)$. The purpose of the present paper is to improve the result of our previous one [14] and to remove the small type condition on the boundary data of the fluid velocity. (We announced the results of this paper in [15]).
2. Preliminaries. First, we make assumptions:
(A1) For each fixed $t \geq 0, \Gamma(t)$ and Γ_{0} are both simple closed curves. Moreover, they are smooth (of class C^{∞}) in x, t.
(A2) There exists $\Omega\left(r_{0}, r_{1}\right)=\left\{x \in \mathbf{R}^{2} ; 0<r_{0}\right.$ $\left.<|x|<r_{1}\right\}$ such that $\Omega\left(r_{0}, r_{1}\right) \subset \Omega(t)$ for all $t \geq 0$. Moreover, there is $\delta>0$ such that
$\operatorname{dist}\left(\Gamma_{0},\left\{|x|=r_{0}\right\}\right) \geq \delta$ and
$\operatorname{dist}\left(\Gamma(t),\left\{|x|=r_{1}\right\}\right) \geq \delta$ for all $t \geq 0$.
(A3) $\quad\left(t+T_{p}\right)=\Omega(t), \Gamma\left(t+T_{p}\right)=\Gamma(t) \quad$ and $\beta\left(\cdot, t+T_{p}\right)=\beta(\cdot, t)$ for all $t \geq 0$.
(A4) $g(x)$ is a bounded continuous vector function in $\boldsymbol{R}^{2} \backslash K$.
(A5) There exists a function $b=b(x, t)$ of the form $b=\operatorname{rot} c(x, t)$ where $c=(x, t) \in C^{3}$ on $B \times[0, \infty)$, periodic in t with period T_{p} and $\left.b\right|_{\partial \Omega(t)}=\beta$.

Remark 1. By (A5), retaking $c(x, t)$, if necessary, it holds

$$
\begin{gathered}
\int_{\Gamma_{0}} \beta \cdot n d S=\int_{\Gamma(t)} \beta \cdot n d S=0, \text { where } B \\
\text { stands for } B_{d} \backslash K .
\end{gathered}
$$

Here, we state two lemmas.
Lemma 2.1 (cf. Temam [19]). For an arbitrary $\varepsilon>0$, there exists $b_{\varepsilon}=b_{\varepsilon}(x, t)$ such that $b_{\varepsilon} \in H^{2}(B), \operatorname{div} b_{\varepsilon}=0, b_{\varepsilon}(\partial \Omega(t))=\beta$, $\left|\left((u \cdot \nabla) b_{\varepsilon}, u\right)\right| \leq \varepsilon\|\nabla u\|^{2}$ for $u \in H_{\sigma}^{1}(\Omega(t))$.

Lemma 2.2 ([12]). For each $\varepsilon>0$, there exists $\quad \bar{\theta}_{\varepsilon}=\bar{\theta}_{\varepsilon}(x, t) \quad$ such that $\quad \bar{\theta}_{\varepsilon} \in C(\bar{B}) \cap$ $H^{2}(B), \bar{\theta}_{\varepsilon}\left(\Gamma_{0}\right)=T_{0}, \bar{\theta}_{\varepsilon}(\Gamma(t))=0$ and $\left\|(u \cdot \nabla) \bar{\theta}_{\varepsilon}\right\|$ $\leq \varepsilon\|\nabla u\|$ for $u \in H_{0}^{1}(\Omega(t))$.

Remark 2. $H^{k}(B)$ and $H_{0}^{k}(B)$ stand for Sobolev spaces. $H_{\sigma}(B)$ and $H_{\sigma}^{1}(B)$ mean sole-
noidal Sobolev spaces.
Remark 3. Thanks to the assumption (A3), b_{ε} and $\bar{\theta}_{\varepsilon}$ can be taken as periodic functions with period T_{p}.

Proof of Lemma 2.2. To show this lemma, we introduce $\theta_{0}(x)$:
(4) $\theta_{0}(x)= \begin{cases}T_{0}, & x \in B_{r_{0}} \backslash K, \\ T_{0} \cdot\left(\log \frac{r}{r_{1}}\right) /\left(\log \frac{r_{0}}{r_{1}}\right), & x \in \Omega\left(r_{0}, r_{1}\right), \\ 0, & x \in B \backslash B_{r_{1}},\end{cases}$ where $B_{r_{i}}=\left\{x \in \boldsymbol{R}^{2} ;|x| \leq r_{i}\right\}(i=0,1)$.

On the other hand, according to Lemma 1.9 of Chapter II of Temam [19], for an arbitrary $\varepsilon>0$, there is $\alpha_{\varepsilon}=\alpha_{\varepsilon}(x, t) \in C^{2}(\Omega(t))$ such that $\alpha_{\varepsilon}=1$ in some neighbourhoods of Γ_{0} and $\Gamma(t) ; \alpha_{\varepsilon}^{*}=0$ if $\rho(x) \geq 2 \delta(\varepsilon)$ and $\left|D_{k} \alpha_{\varepsilon}(x)\right| \leq \varepsilon$ $/ \rho(x)$ if $\rho(x) \leq 2 \delta(\varepsilon)(k=1,2)$, where $\rho(x, t)$ $=\min \left\{\operatorname{dist}\left(x, \Gamma_{0}\right), \operatorname{dist}(x, \Gamma(t))\right\}$ and $\delta(\varepsilon)=$ $\exp (-1 / \varepsilon)$. Now, we put $\bar{\theta}_{\varepsilon}=\alpha_{\varepsilon} \theta_{0}$. Then, thanks to the assumption (A2), we can show, by retaking ε if necessary, the $\bar{\theta}_{\varepsilon}$ satisfies the condition of Lemma 2.2 .

Next, we state an abstract heat convection equation. We start with making the change of variables. We denote $b=b_{\varepsilon}$ and $\bar{\theta}=\bar{\theta}_{\varepsilon}$ (Later we retake $\boldsymbol{\varepsilon}$). Then we put

$$
\begin{aligned}
& u=\hat{u}+b, \theta=\hat{\theta}+\bar{\theta},(x, y)=d\left(x^{*}, y^{*}\right) \\
& t=\frac{d^{2} t^{*}}{\nu}, \hat{u}=\frac{\nu u^{*}}{d}, \hat{\theta}=\frac{\nu T_{0} \theta^{*}}{\kappa}, p=\frac{\rho \nu^{2} p^{*}}{d^{2}}
\end{aligned}
$$

By these relations, we have new variables $u^{*}, \theta^{*}, p^{*}, x^{*}, y^{*}$, and t^{*}. But, after changing variables, we abbreviate asterisks and use the same letters u, θ, p, x, y, and t for the simplicity. Then, equations (1) are transformed to the following:

$$
\begin{equation*}
\left.u\right|_{\partial \Omega(t)}=0,\left.\theta\right|_{\Gamma_{1}}=0,\left.\theta\right|_{\Gamma(t)}=0 \text { for any } \tag{6}
\end{equation*}
$$

$$
t \in(0, \infty)
$$

$$
\begin{align*}
& u\left(\cdot, t+T_{p}\right)=u(\cdot, t), \theta\left(\cdot, t+T_{p}\right) \tag{7}\\
& \quad=\theta(\cdot, t) \operatorname{in} \Omega\left(t+T_{p}\right)=\Omega(t)
\end{align*}
$$

where $R=\alpha g T_{0} d^{3} / \kappa \nu, P=\nu / \kappa$ and T_{p} is a period.

Then, we introduce a proper lower semicontinuous convex (p.l.s.c.) function:

$$
\begin{align*}
& \left\{\begin{array}{l}
u_{t}+(u \cdot \nabla) u=-\nabla p+\Delta u-(u \cdot \nabla) b \\
-(b \cdot \nabla) u-R \theta-b_{t}-(b \cdot \nabla) b \\
+\Delta b+d^{3} g / \nu^{2}-R\left(\bar{\theta}-P^{-1}\right) \text { in } \hat{\Omega},
\end{array}\right. \\
& \operatorname{div} u=0 \text { in } \hat{\Omega} \text {, } \tag{5}\\
& \theta_{t}+(u \cdot \nabla) \theta=P^{-1} \Delta \theta+P^{-1} \Delta \bar{\theta} \\
& -(u \cdot \nabla) \bar{\theta}-(b \cdot \nabla) \theta-(b \cdot \nabla) \bar{\theta} \text { in } \hat{\Omega},
\end{align*}
$$

$$
\varphi_{B}(U)=\left\{\begin{array}{l}
\frac{1}{2} \int_{B}\left(|\nabla u|^{2}+P^{-1}|\nabla \theta|^{2}\right) d x \tag{8}\\
\text { if } U \in H_{\sigma}^{1}(B) \times H_{0}^{1}(B), \\
+\infty \text { if } U \in\left(H_{\sigma}(B) \times L^{2}(B)\right) \backslash \\
\left(H_{\sigma}^{1}(B) \times H_{0}^{1}(B)\right)
\end{array}\right.
$$

Here we define a closed convex set $K(t)$ of $H_{\sigma}(B) \times L^{2}(B)$ by $K(t)=\left\{U \in H_{\sigma}(B) \times L^{2}(B)\right.$; $U=0$ a.e. in $B \backslash \Omega(t)\}$ and denote its indicator function by $I_{K(t)}$, that is, $I_{K(t)}(U)=0$ if $U \in$ $K(t)$ and $+\infty$ if $U \in\left(H_{\sigma}(B) \times L^{2}(B)\right) \backslash K(t)$. Then we define another p.l.s.c. function:
(9) $\varphi^{t}(U)=\varphi_{B}(U)+I_{K(t)}(U)$ for each $t \in[0, \infty)$ with the effective domain

$$
\begin{gathered}
D\left(\varphi^{t}\right)=\left\{U \in H_{\sigma}(B) \times L^{2}(B) ;\left.U\right|_{\Omega(t)} \in\right. \\
\left.H_{\sigma}^{1}(\Omega(t)) \times H_{0}^{1}(\Omega(t)),\left.U\right|_{B \backslash \Omega(t)}=0\right\} .
\end{gathered}
$$

Let $\partial \varphi^{t}$ be the subdifferential operator of φ^{t}, then we have:
$D\left(\partial \varphi^{t}\right)=\left\{U \in H_{\sigma}(B) \times L^{2}(B) ;\left.U\right|_{\Omega(t)}\right.$

$$
\in\left(H^{2}(\Omega(t)) \cap H_{\sigma}^{1}(\Omega(t))\right) \times
$$

$$
\left.\left(H^{2}(\Omega(t)) \cap H_{0}^{1}(\Omega(t))\right),\left.U\right|_{B \backslash \Omega(t)}=0\right\}
$$

$\partial \varphi^{t}(U)=\left\{f \in H_{\sigma}(B) \times L^{2}(B) ;\left.P(\Omega(t)) f\right|_{\Omega(t)}\right.$ $\left.=\left.A(\Omega(t)) U\right|_{\Omega(t)}\right\}$.
Here $\quad A(\Omega(t))=\left(-P_{\sigma}(\Omega(t)) \Delta,-(1 / P) \Delta\right)$, $P(\Omega(t))=\left(P_{\sigma}(\Omega(t)), 1_{\Omega(t)}\right)$, and $P_{\sigma}(\Omega(t))$ is a projection $L^{2}(\Omega(t)) \rightarrow H_{\sigma}(\Omega(t))$.

Then we have the following abstract heat convection equation AHC in $H_{\sigma}(B) \times L^{2}(B)$:

$$
\begin{align*}
\frac{d V}{d t} & +\partial \varphi^{t}(V(t))+F(t) V(t)+M(t) V(t) \tag{10}\\
& \ni P(B) f(t), t \in(0, \infty)
\end{align*}
$$

where $V=(v, \theta)$ and $P(B)=\left(P_{\sigma}(B), 1_{B}\right)$; moreover

$$
\begin{aligned}
F(t) V(t) & =\left(P_{\sigma}(B)(v \cdot \nabla) v,(v \cdot \nabla) \theta\right), \\
M(t) V(t) & =\left(P_{\sigma}(B)((v \cdot \nabla) b+(b \cdot \nabla) v+R \theta),\right.
\end{aligned}
$$

$$
(v \cdot \nabla) \bar{\theta}+(b \cdot \nabla) \theta)
$$

$$
\begin{aligned}
f= & \left(-b_{t}-(b \cdot \nabla) b+\Delta b+d^{3} g / \nu^{2}-\right. \\
& R(\bar{\theta}-(1 / P)) .(1 / P) \Delta \bar{\theta}-(b \cdot \nabla) \bar{\theta})
\end{aligned}
$$

Well, we define the strong solution of AHC (see [10]).

Definition 2.3. Let $V:[0, S] \mapsto H_{\sigma}(B) \times$ $L^{2}(B), S \in(0, \infty)$. Then V is a strong solution of AHC on $[0, S]$ if it satisfies the following properties (i) and (ii):
(i) $V \in C\left([0, S] ; H_{\sigma}(B) \times L^{2}(B)\right)$ and $d V / d t$ exists for a.e. $t \in(0, S]$.
(ii) $V(t) \in D\left(\partial \varphi^{t}\right)$ for a.e. $t \in[0, S]$ and there exists a function $G:[0, S] \mapsto$ $H_{\sigma}(B) \times L^{2}(B)$ satisfying $G(t) \in \partial \varphi^{t}(V(t))$ and
(11) $\frac{d V}{d t}+G(t)+F(t) V(t)+M(t) V(t)=$ $P(B) f(t)$ for a.e. $t \in[0, S]$.
Remark 4. If V is a strong solution, then for any $\tau>0$, both $d V / d t$ and G belong to $L^{2}(\tau$, $S ; H_{\sigma}(B) \times L^{2}(B)$) (see [10]).

Definition 2.4. A strong solution of $A H C$ is called a periodic strong solution (resp. a strong solution of the initial value problem) if it satisfies the condition (12) (resp. (13)):
(12) $U\left(t+T_{p}\right)=U(t)$ for $t \in[0, \infty)$ in $H_{\sigma}(B) \times L^{2}(B)$,
(13) $\quad U(0)=(\tilde{a}, \tilde{h})$ in $H_{\sigma}(B) \times L^{2}(B)$, where $(a, h) \in H_{\sigma}(\Omega(0)) \times L^{2}(\Omega(0))$ and \tilde{a}, \tilde{h} mean extensions of a, h to B with putting zero outside $\Omega(0)$ respectively.
3. Results. In our previous paper ([14]), we had a theorem stated as below:

Theorem 3.1. If physical data, domain constants and the period T_{p} satisfy the relation (RTP): $\left(\varepsilon C_{1}\right)^{-1} \log (1+2 A) \leq T_{p}$, then there is a periodic strong solution of AHC. Here C_{1} is a domain constant, $\varepsilon>0$ is an appropriate small number and A does not include b but includes T_{p}.

Remark 5. $\quad A=8\left((4-\varepsilon) C_{1}\right)^{-1}\left(|R|^{2}+\right.$ $\left.\|\nabla \bar{\theta}\|_{L^{\infty}(\widehat{B})}^{2}\right)\left(4 \kappa / \nu-\varepsilon C_{1}\right)^{-1}$.

In this paper, we will improve the above results. Let us make assumptions.
(A 6) $b \in L^{\infty}\left(0, \infty ; H^{2}(B)\right), b_{t} \in L^{\infty}\left(0, \infty ; L^{2}(B)\right)$ and $\bar{\theta} \in L^{\infty}\left(0, \infty ; H^{2}(B)\right)$.

Theorem 3.2. If Assumptions (A1)~(A6) are satisfied, then the following hold:
(i) For sufficiently small $R=\alpha g T_{0} d^{3} / \kappa \nu$, there exists a periodic strong solution of AHC with period T_{p}.
(ii) In addition to the above condition, if
$\|b\|_{L^{\infty}\left(0, \infty, H^{2}(B)\right)},\left\|b_{t}\right\|_{L^{\infty}\left(0, \infty, L^{2}(B)\right)}$ and $\|\bar{\theta}\|_{L^{\infty}\left(0, \infty, H^{2}(B)\right)}$ are sufficiently small and ν is lorge enough, then the periodic strong solution is unique.
(iii) Under the same assumptions on $b, b_{t}, \bar{\theta}$ and ν, the periodic strong solution $U_{\pi}(t)$ obtained in (i) is asymptotically stable in the following sense, that is,
$\left\|U(t)-U_{\pi}(t)\right\|_{L^{2}(\Omega(t)) \times L^{2}(\Omega(t))} \rightarrow 0$ as $t \rightarrow \infty$, where $U(t)$ is a strong solution of $A H C$ with $U(0)=U_{\pi}(0)+U_{0}$ and U_{0} is an arbitrarily given data in $H_{\sigma}(\Omega(0)) \times$ $L^{2}(\Omega(0))$.
4. Proof of the theorem. We shall state
several lemmas.
Lemma 4.1. There exists a positive constant C_{1} such that $\varphi^{t}(U) \geq C_{1}\|U\|_{L^{2}(B)}^{2}$ for every $t \in$ $[0, S]$ and $U \in H_{\sigma}^{1}(B) \times H_{0}^{1}(B)$.

The next lemma is a version of Lemma 2.1 of Foias, Manley and Temam [2].

Lemma 4.2. Let $U=(u, \theta)$ be a strong solution of AHC. Then
(14) $\|\theta(t)\|_{L^{2}(B)} \leq|B|^{1 / 2} \kappa / \nu+\|\theta(0)\| \exp (-2 \kappa t / \nu)$ holds for $t \in(0, \infty)$, where $|B|$ is a volume of B.

The following lemma is important.
Lemma 4.3. (i) Let $U=(u, \theta)$ be a strong solution of AHC. Then, for an arbitrary $\delta \in(0, S)$, there are positive constants $a_{i}(\delta)(i=1,2,3)$, independent of S, depending on b and θ, such that
(15) $\quad \varphi^{t}(U(t)) \leq\left(a_{2}(\delta) / \delta+a_{3}(\delta)\right) \exp \left(a_{1}(\delta)\right)$ for any $t \in[\delta, S]$.
(ii) Furthermore, if U is a periodic strong solution with period T_{p}, then the same estimate holds for all $t \in\left[0, T_{p}\right]$.
Proof of Lemma 4.3. Multiplying AHC by $G(t)$ and integrating on B, then we have for a.e. t $\in(0, S]$

$$
\begin{align*}
& \frac{d}{d t} \varphi^{t}(U(t))+\|G(t)\|^{2} \tag{16}\\
& \leq C_{4}\|U(t)\|^{1 / 2} \cdot\|U(t)\|_{1} \cdot\|G(t)\|^{3 / 2} \\
& \quad+|(M(t) U(t), G(t))|+\|f(t)\| \cdot\|G(t)\| \\
& \quad+C_{2}\|G(t)\| \cdot \varphi^{t}(U(t))^{1 / 2}+C_{3} \varphi^{t}(U(t)),
\end{align*}
$$

where $\|\cdot\|_{k}=\|\cdot\|_{H^{k}(B)}$ and $C_{i}(i \geq 1)$ are domain constants. From (16), we have
(17) $\frac{d}{d t} \varphi^{t}(U(t))+\frac{1}{2}\|G(t)\|^{2}$

$$
\begin{aligned}
\leq & C_{5}\|U(t)\|^{2} \varphi^{t}(U(t))^{2}+C_{6} M_{1} \varphi^{t}(U(t)) \\
& +\left(2 C_{2}^{2}+C_{3}\right) \varphi^{t}(U(t))+2\|f\|_{\infty, 2}^{2}
\end{aligned}
$$

where $M_{1}=\|b\|_{1} \cdot\|b\|_{2}+2\|b\| \cdot\|b\|_{2}+\|\bar{\theta}\|_{1}$. $\|\bar{\theta}\|_{2}+|R|^{2}$ and $\|f\|_{\infty, 2}=\|f\|_{L^{\infty}\left(0, \infty ; L^{2}(B)\right)}$. Here we used (3.23) of Chap. III in Temam [20]. On the other hand, multiplying AHC by $U(t)$ and integrating on B, then we get

$$
\begin{equation*}
\frac{d}{d t}\|U(t)\|^{2}+2 C_{1}\|U(t)\|^{2} \leq\left(4|R|^{2} / C_{1}\right) \tag{18}
\end{equation*}
$$

$$
\|\theta(t)\|^{2}+2\|f\|_{\infty, 2}^{2} / C_{1} \text { for a.e. } t \in(0, S]
$$ where we used Lemma 2.1 and Lemma 2.2 with suitable $\varepsilon>0$. Thanks to Lemma 4.2 and (18),we see for any $t \in(0, S]$

$$
\text { (19) } \begin{aligned}
& \|U(t)\|^{2} \leq \exp \left(-2 C_{1} t\right)\|U(0)\|^{2} \\
+ & \left\{\left(2|R|^{2} / C_{1}^{2}\right)\left(|B| \kappa^{2} / \nu^{2}+\|\theta(0)\|^{2}\right)\right. \\
+ & \left.\|f\|_{\infty, 2}^{2} / C_{1}^{2}\right\}\left(1-\exp \left(-2 C_{1} t\right)\right)
\end{aligned}
$$

Thus, noting $U(t)$ is continuous at $t=0$, we get an a priori estimate:
(20) $\|U(t)\|^{2} \leq C_{0}+C_{0}{ }^{\prime}\|U(0)\|^{2}$ for any $t \in[0, S]$,
where $C_{0}=\left(2|R|^{2} \cdot|B| \kappa^{2} / \nu^{2}+\|f\|_{\infty, 2}^{2}\right) / C_{1}^{2}$ and $C_{0}^{\prime}=1+2|R|^{2} / C_{1}^{2}$.
Making use of (17), (20) and the uniform Gronwall inequality, we get (15), where

$$
\left\{\begin{align*}
a_{1}(\delta)= & \left(2 C_{2}^{2}+C_{3}+C_{6} M_{1}\right) \delta \tag{21}\\
& +C_{5}\left(C_{0}+C_{0}^{\prime}\|U(0)\|^{2}\right) a_{3}(\delta) \delta \\
a_{2}(\delta)= & 2 \delta\|f\|_{\infty, 2}^{2} \\
a_{3}(\delta)= & 2^{-1}\left(C_{0}+C_{0}^{\prime}\|U(0)\|^{2}\right) \\
& +\left(\delta / C_{1}\right)\left\{2 | R | ^ { 2 } \left(|B|^{2} \kappa^{2} / \nu^{2}\right.\right. \\
& \left.\left.+\|\theta(0)\|^{2}\right)+\|f\|_{\infty, 2}^{2}\right\}
\end{align*}\right.
$$

Concerning (ii), we can show by means of the periodicity of $U(t)$ and data. (see [14].)

Lemma 4.4. If U is a periodic solution, then we have

$$
\begin{equation*}
\|\theta(0)\|^{2} \leq|B| \kappa^{2} / \nu^{2} \tag{22}
\end{equation*}
$$

(23) $\|U(0)\|^{2} \leq\left(1 / C_{1}^{2}\right)\left(4|R|^{2} \cdot|B| \kappa^{2} / \nu^{2}+\|f\|_{\infty, 2}^{2}\right)$.

Lemma 4.5. (see [14]). For any $U_{0}=(a, h)$ $\in H(0) \equiv H_{\sigma}(\Omega(0)) \times L^{2}(\Omega(0))$, there exists a unique strong solution U of $A H C$ on $[0, S]$ with $U(0)=U_{0}$.

Proof of Lemma 4.5. For $U_{0} \in H(0)$, there exists a sequence $\left\{U_{0, n}\right\} \subset H_{\sigma}^{1}(\Omega(0)) \times H_{0}^{1}(\Omega(0))$ such that $\left\|U_{0, n}-U_{0}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Then we have strong solutions U_{n} of (AHC) with $U_{n}(0)=$ $U_{0, n}$ and by means of Gronwall's inequality we get $\quad\left\|U_{n}(t)-U_{m}(t)\right\|_{H_{B}} \leq C\left\|U_{0, n}-U_{0, m}\right\|_{H^{(0)}}$ for all $t \in[0, S]$, where $H_{B}=H_{\sigma}(B) \times L^{2}(B)$ and a constant $C>0$ is independent of n, m, t. Hence we obtain $U \in C\left([0, S] ; H_{B}\right)$ such that $\left\|U_{n}(t)-U(t)\right\|_{H_{B}} \rightarrow 0$ as $n \rightarrow \infty$ uniformly on [$0, S$]. Moreover, by viture of (15) and the lower semicontinuity of φ^{t}, we see $U(t) \in D\left(\varphi^{t}\right)$ for any $t \in(0, S]$. Now, let us fix an arbitrary $\delta \in$ $(0, S)$ and consider an initial value problem as follows:

$$
\begin{aligned}
& d V / d t+\partial \varphi^{t}(V(t))+F(t) V(t) \\
& \quad+M(T) V(t) \ni P(B) f(t)
\end{aligned}
$$

for $t \in[\delta, S], V(\delta)=U(\delta) \in D\left(\varphi^{\delta}\right)$.
Then a unique solution of this problem exists and we get an estimate $\left\|U_{n}(t)-V(t)\right\|_{H_{B}} \leq C$ $\left\|U_{n}(\delta)-V(\delta)\right\|_{H(\delta)}$ for all $t \in[\delta, S]$. Letting $n \rightarrow \infty$, then we have $\|U(t)-V(t)\|_{H_{B}}=0$ for all $t \in[\delta, S]$. Since $\delta>0$ is arbitrary and $U \in$ $C\left([0, S] ; H_{B}\right)$, therefore we see that U is a strong solution with $U(0)=U_{0}$.

Proof of Theorem 3.2. To start with, we prove (i) of the theorem. Here we assume $|R|$ $\leq C_{1} / 4$. Multiplying AHC by $U(t)$, then we have

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\|U(t)\|^{2}+2 \varphi^{t}(U(t)) \tag{24}\\
& \leq|((u \cdot \nabla) b, u)|+|((b \cdot \nabla) u, u)| \\
&+|(R \theta, u)|+|((u \cdot \nabla) \bar{\theta}, \theta)| \\
&+|((b \cdot \nabla) \theta, \theta)|+|(f(t), U(t))| \\
& \leq \varepsilon\|\nabla U\|^{2}+|R| \cdot\|\theta\| \cdot\|u\|+\varepsilon^{\prime}\|\nabla \theta\| \cdot\|\nabla u\| \\
&+\|f(t)\| \cdot\|U(t)\| \\
& \leq \frac{1}{4} \varphi^{t}(U(t)) \times 4+\frac{1}{4 \eta}\|f\|_{\infty, 2}^{2}
\end{align*}
$$

where we used Lemma 2.1 with $\varepsilon=1 / 8$ and Lemma 2.2 with $\varepsilon^{\prime}=(1 / 8)(\kappa / \nu)^{1 / 2}, \eta=$ $C_{1} / 4(\geq|R|)$. From (24), we get
(25) $\quad \frac{d}{d t}\|U(t)\|^{2}+2 C_{1}\|U(t)\|^{2} \leq\left(2 / C_{1}\right)\|f\|_{\infty, 2}^{2}$ and we have
(26) $\quad\|U(t)\|^{2} \leq \exp \left(-2 C_{1} t\right)\|U(0)\|^{2}$

$$
+\left(1 / C_{1}^{2}\right)\|f\|_{\infty, 2}^{2}\left(1-\exp \left(-2 C_{1} t\right)\right)
$$

Here we define a mapping τ as follows:
(27) $\tau: H=H(0) \equiv H_{\sigma}(\Omega(0)) \times L^{2}(\Omega(0)) \rightarrow H$, $\tau U(0)=U\left(T_{p}\right)$ in H.
Here we used $\Omega(0)=\Omega\left(T_{p}\right)$ and Lemma 4.5. We see τ is continuous in H. Moreover, τ is compact in H, since $\tau U(0)=U\left(T_{p}\right)$ is included in a bounded set of $H_{\sigma}^{1}(\Omega(0)) \times H_{0}^{1}(\Omega(0))$ by Lemma 4.3. On the other hand, if we taker $r>0$ such that $\left(1 / C_{1}\right)\|f\|_{\infty, 2} \leq r$, then for $U(0)$ with $\|U(0)\| \leq r$ we have by (25)
(29) $\quad\left\|U\left(T_{p}\right)\right\|^{2} \leq\left(\exp \left(-2 C_{1} T_{p}\right)\right) r^{2}$

$$
+r^{2}\left(1-\exp \left(-2 C_{1} T_{p}\right)\right)=r^{2}
$$

Therefore, we see $\tau B_{r} \subset B_{r}$, where $B_{r}=\{\Phi \in$ $\left.H ;\|\Phi\|_{H} \leq r\right\}$. Hence, by Schauder's fixed point theorem, there exists $V_{0} \in H$ such that $\tau V_{0}=V_{0}$.

Next we prove (ii). Let U_{π} be the periodic strong solution in (i) and U_{1} be any periodic solution. Put $W=U_{\pi}-U_{1}$, then we have
(30) $\quad(1 / 2)\left(d\|W(t)\|^{2} / d t\right)+2 \varphi^{t}(W(t)) \leq$
$C_{7} \varphi^{t}(W(t)) \varphi^{t}\left(U_{\pi}(t)\right)^{1 / 2}+C_{8} N(t) \varphi^{t}(W(t))$
for a.e. $t \in\left[0, T_{P}\right]$. Here $N(t)=\|\nabla b(t)\|+$ $\|\nabla \bar{\theta}(t)\|+|R|$. Noticing (ii) of Lemma 4.3, (21), (22), (23), and using the assumptions of (ii) of this theorem, then we find $2-C_{7} \varphi^{t}\left(U_{\pi}(t)\right)^{1 / 2}$ $C_{8} N(t)>0$ for $t \in\left[0, T_{p}\right]$. Thus, we can show the uniqueness of the solution for small data.

Finally, we mention the proof of (iii). Let $U(t)$ be a strong solution of AHC with the initial condition $U(0)=U_{\pi}(0)+U_{0}$ where $U_{0} \in$ $H_{\sigma}(\Omega(0)) \times L^{2}(\Omega(0))$. Put $V=U-U_{\pi}$. Then we have the similar type inequality to (30) on V. Moreover by virtue of the smallness assumptions on data and the periodicity we can take $\lambda \equiv 2-$
$C_{7} \varphi^{t}\left(U_{\pi}(t)\right)^{1 / 2}-C_{8} N(t)>0$ and we get $\|V(t)\|^{2}$ $\leq\|V(0)\|^{2} \exp \left(-2 \lambda C_{1} t\right)$ for any $t \in(0, \infty)$. Hence, we have shown the (exponential) asymptotic stability of the periodic solution U_{π}.

References

[1] P. Constantin, C. Foias and R. Temam: Attractors representing turbulent flows. Mem. Am. Mat. Soc., 53, no. 314 (1985).
[2] C. Foias, O. Manley and R. Teman: Attractors for the Bénard problem: Existence and physical bounds on their fractal dimension. Nonliner Anal. T. M. A., 11, 939-967 (1987).
[3] H. Fujita and T. Kato: On the Navier-Stokes initial value problem I. Arch. Rational Mech. Anal., 16, 269-315 (1964).
[4] H. Fujita and N.Sauer: On existence of weak solutions of Navier-Stokes equations in regions with moving boundaries. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 17, 403-420 (1970).
[5] T. Hishida: Existence and regularizing properties of solutions for the nonstationary convection problem. Funkcial. Ekvac., 34, 449-474 (1991).
[6] H. Inoue and M. Ottani: Heat convection equations in regions with moving boundaries (to appear).
[7] H. Inoue and M. Ottani: Strong solutions of initial-boundary value problems for heat convection equations in noncylindrical domains. Nonlinear Anal. ,24, no. 7, 1061-1080 (1995).
[8] H. Morimoto: On the existence of weak solutions of equation of natural convection. J. Fac. Sci. Univ. Tokyo Sect. IA, 36, 87-102 (1989).
[9] K. Ōeda: On the initial value problem for the heat covection equation of Boussinesq approximation in a time-dependent domain. Proc. Japan

Acad., 64A, 143-146 (1988).
[10] K. Oeda: Weak and strong solutions of the heat convection equations in regions with moving boundaries. J. Fac. Sci. Univ. Tokyo Sect. IA, 36, 491-536 (1989).
[11] K. Ōeda: Remarks on the stability of certain periodic solutions of the heat convection equations. Proc. Japan Acad., 66, 9-12 (1990).
[12] K. Ōeda: On absorbing sets for evolution equations in fluid mechanics. RIMS Kokyuroku, no. 745, pp. 144-156 (1990).
[13] K. Ōeda: On the Hausdorff dimension of the attractor for the heat convection equation. RIMS Kokyuroku, no. 824, pp. 212-223 (1993).
[14] K. Ōeda: Periodic solutions of the 2-dimensional heat convection equations. Proc. Japan Acad., 69A, 71-76 (1993).
[15] K. Ōeda: Notes on the periodic solutions of the 2-dimensional heat convections equations. RIMS Kokyuroku, no. 862, pp. 191-201 (1994).
[16] M. Ôtani and Y. Yamada: On the Navier-Stokes equations in non-cylindrical domains: An approach by the subdifferential operator theory. J. Fac. Sci. Tokyo Sect. IA, 25, 185-204 (1978).
[17] P. H. Rabinowitz: Existence and nonuniqueness of rectangular solutions of the Benard problem. Arch. Rational Mech. Anal., 29, 32-57 (1968).
[18] D. H. Sattinger: Group theoretic methods in bifurcation theory. Lecture Notes in Math., 762, Springer Verlag, Berlin-Heidelberg-New York (1978).
[19] R. Temam: Navier-Stokes Equations. NorthHolland, Amsterdam (1984).
[20] R. Temam: Infinite-dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988).

