On the Vanishing of Iwasawa Invariants of Certain (p, p)-extensions of Q

By Gen YAMAMOTO

Department of Mathematics, School of Science and Engineering, Waseda University (Communicated by Shokichi IYANAGA, M. J. A., March 12, 1997)

Abstract: Let p be any odd prime. We show that the Iwasawa λ_p and μ_p -invariants of certain (p, p)-extension fields K of Q vanish, and that there are infinitely many such K.

1. Introduction. Let p be a prime and Z_p the ring of p-adic integers. Let k be a finite extension of the rational number field Q, k_{∞} a Z_p -extension of k, and k_n the n-th layer of k_{∞}/k . Let A_n be the p-Sylow subgroup of the ideal class group of k_n . Iwasawa proved the well-known theorem about the order $\# A_n$ of A_n that there exist integers $\lambda = \lambda(k_{\infty}/k) \ge 0$, $\mu = \mu(k_{\infty}/k) \ge 0$, $\nu = \nu(k_{\infty}/k)$, and $n_0 \ge 0$ such that

$$\#A_n = p^{\lambda n + \mu p^n + \nu}$$

for all $n \ge n_0$. These integers $\lambda = \lambda(k_{\infty}/k)$, $\mu = \mu(k_{\infty}/k)$ and $\nu = \nu(k_{\infty}/k)$ are called *Iwasawa invariants* of k_{∞}/k for p. If k_{∞} is the cyclotomic \mathbb{Z}_p -extension of k, we write $\lambda_p(k)$, $\mu_p(k)$ and $\nu_p(k)$ for the above invariants, respectively.

In [4], Greenberg conjectured that if k is a totally real, $\lambda_p(k) = \mu_p(k) = 0$. About the conjecture, there are many results for real quadratic fields by Fukuda, Ichimura, Komatsu, Ozaki, Sumida, Taya, etc.. For example, it is known that if p = 3 and $k = Q(\sqrt{m})$, 1 < m < 10000, then $\mu_3(k) = \lambda_3(k) = 0$ (cf. [5] and [8]). For *p*-extension fields of Q, there are results by Greenberg ([4], V), Iwasawa ([6]), Fukuda, Komatsu, Ozaki, and Taya ([3]), etc. On the other hand, Ferrero and Washington have shown that $\mu_p(k) = 0$ for any abelian extension field k of Q.

In this paper we shall show $\lambda_p(K) = \mu_p(K) = 0$ for some abelian extension number fields K of Q with $\operatorname{Gal}(K/Q) \simeq (Z/pZ)^2$, and the existence of infinitely many such K.

2. Theorem. Let p be a fixed odd prime. Let p_1 and p_2 be distinct primes with $p_1 \equiv p_2 \equiv 1 \pmod{p}$. Then there exists the unique subfield $k(p_i)$ of $Q(\zeta_{p_i})$ which is cyclic over Q of degree p for i = 1, 2, where ζ_{p_i} is a primitive p_i -th root of unity. We put $K = k(p_1)k(p_2)$. Let K_{∞} be the cyclotomic \mathbb{Z}_p -extension of K and K_n the *n*-th layer and A_n the *p*-Sylow subgroup of the ideal class group of K_n . Our main purpose of this section is to prove the following theorem:

Theorem 1. Let p, p_1 , p_2 and K be as above. Assume that p is not a p-th power residue modulo p_1 and p_2 is not a p-th power residue modulo p_2 and $p_2 \neq 1 \pmod{p^2}$. If one of the following conditions (i)-(iii) is satisfied, then $\lambda_p(K) = \mu_p(K) = 0$.

(i) p is a p-th power residue modulo p_2 .

- (ii) p_2 is a p-th power residue modulo p_1 .
- (iii) $p_1 \equiv 1 \pmod{p^2}$.

Let Q_1 be the first layer of the cyclotomic Z_p -extension of Q. For the field $K_1 = KQ_1$, it is easy to see that K_1/Q is Galois and unramified outside p, p_1 and p_2 and $\text{Gal}(K_1/Q) \simeq (Z/pZ)^3$. Let G_p , $G_{p_i}(i = 1,2)$ be the decomposition groups for p, p_i in $\text{Gal}(K_1/Q)$ and let D_p , D_{p_i} be the fixed field of G_p , G_{p_i} , respectively.

For the field K_1 , we have the following result which we shall use as a lemma (The author wishes to thank Dr. Manabu Ozaki for drawing his attention to the result).

Lemma 2 ([1] (G. Cornell and M. Rosen)). Following statements (a) and (b) are equivalent:

(a) The class number of K_1 is not divisible by p.

(b) $[D_p: \mathbf{Q}] = [D_{P_1}: \mathbf{Q}] = [D_{p_2}: \mathbf{Q}] = p$ and $D_p D_{p_1} D_{p_2} = K_1$.

On the other hand , we have also the following result.

Lemma 3 ([2] (T. Fukuda)). Let k_{∞}/k be a \mathbb{Z}_{p} -extention. Let $e \geq 0$ be an integer such that in k_{∞}/k_{e} all ramified primes are totally ramified. If # $A_{n} = \# A_{n+1}$ for some $n \geq e$, then $\mu_{p}(k_{\infty}/k) = \lambda_{p}(k_{\infty}/k) = 0$. **Proof of Theorem 1.** First we note that A_0 is trivial because p_1 is not a p-th power residue modulo p_2 . We check $[D_p: Q] = [D_{p_1}: Q] = [D_{p_2}: Q]$ = p. Since $\operatorname{Gal}(K_1/Q) \simeq (\mathbb{Z}/p\mathbb{Z})^3$ and p, $p_i(i =$ 1,2) have ramification indices p, it is sufficient for this purpose to show that there exists a subfield of $K_1(\neq Q)$ in which p or p_1 or p_2 remains prime. But from our assumptions for p, p_i , it follows easily that p is inert in $k(p_1)$, p_1 is inert in $k(p_2)$, and p_2 is inert in Q_1 .

We note that $D_p \subset k(p_1)k(p_2) = K$, $D_{p_1} \subset k(p_2) \mathbf{Q}_1$, and $D_{p_2} \subset k(p_1) \mathbf{Q}_1$. Next, we consider the composite field $D_p D_{p_1} D_{p_2}$ in each of the cases (i)-(iii).

(i) Since $D_p = k(p_2)$ by (i), and $D_{p_1} \neq k(p_2)$, it follows that $D_p D_{p_1} = k(p_2) Q_1$. Also since $D_{p_2} \subset k(p_1) Q_1$ and $D_{p_2} \neq Q_1$, $D_{p_2} \not\subset k(p_2) Q_1 = D_p D_{p_1}$. Hence we have $D_p D_{p_1} D_{p_2} = K_1$.

(ii) Since $D_{p_2} = k(p_1)$ by (ii), and $D_p \neq k(p_1)$, it follows that $D_p D_{p_2} = k(p_1)k(p_2)$. Also since $D_{p_1} \subset k(p_2) \mathbf{Q}_1$ and $D_{p_1} \neq k(p_2)$, $D_{p_1} \not\subset k(p_1)k(p_2)$ $= D_p D_{p_2}$. Hence we have $D_p D_{p_1} D_{p_2} = K_1$.

 $= D_{p}D_{p_{2}}. \text{ Hence we have } D_{p}D_{p_{1}}D_{p_{2}} = K_{1}.$ (iii) Since $D_{p_{1}} = \mathbf{Q}_{1}$ by (iii), and $D_{p_{2}} \neq \mathbf{Q}_{1}$, it follows that $D_{p_{1}}D_{p_{2}} = k(p_{1})\mathbf{Q}_{1}.$ Also since D_{p} $\subset k(p_{1})k(p_{2})$ and $D_{p} \neq k(p_{1}), D_{p} \not\subset k(p_{1})\mathbf{Q}_{1} =$ $D_{p_{1}}D_{p_{2}}.$ Hence we have $D_{p}D_{p_{1}}D_{p_{2}} = K_{1}.$

Hence if one of conditions (i)-(iii) is satisfied, then the class number of K_1 is not divisible by pby Lemma 2. This means that A_1 is trivial. Since p does not ramify in K/Q and Z_p -extensions are unramified outside p (cf. [9, p. 264]), all ramified primes in K_{∞}/K are totally ramified. Hence we can apply Lemma 3 and conclude that $\lambda_p(K) =$ $\mu_p(K) = 0.$

3. Remarks. We note that our theorem 1 (ii) has the following relations with the known result. In [4], Greenberg proved $\lambda_p(k) = \mu_p(k) = 0$ for the fields $k \subseteq K$, where K satisfies the conditions of our theorem 1 (ii) and k/Q is cyclic and p remains prime in k. This follows from our theorem because if $k \subseteq K$ then $\lambda_p(k) \leq \lambda_p(K)$ and $\mu_p(k) \leq \mu_p(K)$.

In [6], Iwasawa proved that if K satisfies the conditions of Theorem 1 (ii) and $p_1 \not\equiv 1 \pmod{p^2}$, then $\lambda_p(K) = \mu_p(K) = 0$, which is contained in our theorem. Iwasawa proved also that there exist infinitely many pairs of primes (p_1, p_2) satisfying these conditions. We shall show that we can prove by the method as in [6], the existence of infinitely many pairs of primes (p_1, p_2) satisfying the pairs of primes (p_1, p_2) satisfy pairs of primes (p_1, p_2) satisfy pairs of primes (p_2, p_3) satisfy pairs of primes (p_1, p_2) satisfy pairs of primes (p_2, p_3) satisfy pairs of primes (p_2, p_3) satisfy pairs of primes (p_3, p_3) satisfy pairs pairs

 p_2) satisfying the conditions of our theorem 1 (i), (ii). We have namely,

Theorem 4. For any given odd prime p, there exist infinitely many pairs of prime numbers (p_1, p_2) which satisfy the conditions of Theoerem 1 (i), (ii), and (iii), respectively.

Proof. Since the case (ii) is proved in [6], we prove (i) and (iii). Let P and P' denote the cyclotomic fields $Q(\zeta_p)$ and $Q(\zeta_{p^2})$, respectively. Then P' and $P(\sqrt[p]{p})$ are independent cyclic extensions of degree p over P.

(i) We can choose a prime ideal \mathfrak{p}_1 of Pwith absolute degree 1 such that \mathfrak{p}_1 is undecomposed in $P(\sqrt[p]{p})$. By Tchebotarev density theorem, there exist infinitely many such prime ideals \mathfrak{p}_1 . Let $p_1 = N_{P/Q}(\mathfrak{p}_1)$, where $N_{P/Q}$ is the norm map from P to Q. Then $p_1 \equiv 1 \pmod{p}$ and, by Kummer theory, p is not a p-th power residue modulo p_1 . Now P', $P(\sqrt[p]{p})$ and $P(\sqrt[p]{p_1})$ are independent cyclic extensions of degree p over P. Hence there is a prime ideal \mathfrak{p}_2 of P with absolute degree 1 such that \mathfrak{p}_2 is undecomposed in both P' and $P(\sqrt[p]{p_1})$, but is decomposed in $P(\sqrt[p]{p_1})$. By Tchebotarev density theorem, there exist infinitely many such prime ideals \mathfrak{p}_2 . Let $p_2 = N_{P/Q}(\mathfrak{p}_2)$. Then p_2 $\equiv 1 \pmod{p}, p_2 \not\equiv 1 \pmod{p^2}, p_1$ is not a *p*-th power residue modulo p_2 and p is a p-th power residue modulo p_2 . Hence p_1 and p_2 satisfy the conditions of Theorem 1 (i) and there exist infinitely many pairs (p_1, p_2) .

(iii) We can choose a prime ideal \mathfrak{p}_1 of P with absolute degree 1 such that \mathfrak{p}_1 is undecomposed in $P(\sqrt[p]{p})$, but is decomposed in P'. Let $p_1 = N_{P/Q}(\mathfrak{p}_1)$. Then $p_1 \equiv 1 \pmod{p^2}$ and p is not a p-th power residue modulo p_1 . Now P' and $P(\sqrt[p]{p_1})$ are independent cyclic extensions of degree p over P. Hence there is a prime ideal \mathfrak{p}_2 of P with absolute degree 1 such that \mathfrak{p}_2 is undecomposed in both P' and $P(\sqrt[p]{p_1})$. Then $p_2 \equiv 1 \pmod{p}$, $p_2 \not\equiv 1 \pmod{p^2}$ and p_1 is not a p-th power residue modulo p_2 . Hence p_1 and p_2 satisfy the conditions of Theorem 1 (iii) and there exist infinitely many pairs (p_1, p_2) by Tchebotarev density theorem.

References

- G. Cornell and M. Rosen: The class group of an absolutely abelian *l*-extension. Illinois J. Math., 32, 453-461 (1988).
- [2] T. Fukuda: Remarks on Z_p -extensions of Number

fields. Proc. Japan Acad., 70A, 264-266 (1994).

- [3] T. Fukuda, K. Komatsu, M. Ozaki, and H. Taya: On Iwasawa λ_p -invariants of real cyclic extension of degree p. Tokyo J. Math. (to appear).
- [4] R. Greenberg: On the Iwasawa invariants of totally real number fields. Amer. J. Math., 98, 263-284 (1976).
- [5] H. Ichimura and H. Sumida: On the Iwasawa λ -invariants of certain real abelian fields. (preprint).
- [6] K. Iwasawa: A note on capitulation problem for

number fields. II. Proc. Japan Acad., **65A**, 183-186 (1989).

- [7] K. Iwasawa: Riemann-Hurwitz formula and *p*-adic Galois representations for number fields. Tôhoku Math. J., 33, 263-288 (1981).
- [8] J. Kraft and R. Schoof: Computing Iwasawa modules of real quadratic number fields. Compositio Math., 97, 135-155 (1995).
- [9] L. C. Washington: Introduction to Cyclotomic Fields. Springer-Verlag, New York-Heidelberg-Berlin (1982).