Convergence in the Space of Fourier Hyperfunctions

By Stevan PILIPOVIĆ and Bogoljub STANKOVIĆ

Institute of Mathematics, University of Novi Sad, Yugoslavia (Communicated by Kiyosi ITÔ, M. J. A., March 12, 1997)

Abstract: A structural characterization of a convergent family of Fourier hyperfunctions $\{f_h; h \in \Gamma\}$ is given.

_

1. Notations and definitions. We denote by D^n the compactification of \mathbb{R}^n , $D^n = \mathbb{R}^n \cup S_{\infty}^{n-1}$ and supply it with the usual topology. The sheaves $\tilde{\mathcal{O}}$ and \mathcal{Q} on $D^n + i\mathbb{R}^n$ are defined as follows (cf. [3-6]). For any open set $U \subset D^n + i\mathbb{R}^n$, $\tilde{\mathcal{O}}(U)$ consists of those elements of $\mathcal{O}(U \cap \mathbb{C}^n)$ which satisfy $|F(z)| \leq C_{V,\varepsilon} \exp(\varepsilon |\operatorname{Re} z|)$ uniformly for any open set $V \subset \mathbb{C}^n$, $\bar{V} \subset U$, and for every $\varepsilon > 0$. Hence, $\mathcal{O}|_{\mathbb{C}^n} = \mathcal{O}$. The derived sheaf $\mathscr{H}_{D^n}^n(\tilde{\mathcal{O}})$, denoted by \mathcal{Q} , is called the sheaf of Fourier hyperfunctions. It is a flabby sheaf on D^n ([4]).

Let I be a convex neighbourhood of $0 \in \mathbb{R}^n$ and $U_j = \{(D^n + iI) \cap \{\operatorname{Im} z_j \neq 0\}\}, j = 1, \ldots, n$. The family $\{D^n + iI, U_j; j = 1, \ldots, n\}$ gives a relative Leray covering for the pair $\{D^n + iI, (D^n + iI) \setminus D^n\}$ relative to the sheaf $\tilde{\mathcal{O}}$. Thus $\mathcal{Q}(D^n) = \tilde{\mathcal{O}}((D^n + iI) \# D^n) / \sum_{j=1}^n \tilde{\mathcal{O}}((D^n + iI) \#_j D^n)$, where $(D^n + iI) \# D^n = U_1 \cap \ldots \cap U_n$ and $(D^n + iI) \#_j D^n$ $= U_1 \cap \ldots \cap U_{j-1} \cap U_{j+1} \cap \ldots \cap U_n$.

We shall use the notation Λ for the set of *n*-vectors with entry $\{-1,1\}$; the corresponding open orthants in \mathbb{R}^n will be denoted by $\Gamma_{\sigma}, \sigma \in \Lambda$.

A global section $f = [F] \in \mathcal{Q}(D^n)$ is defined by $F \in \tilde{\mathcal{O}}((D^n + iI) \# D^n)$; $F = (F_{\sigma})$, where $F_{\sigma} \in \tilde{\mathcal{O}}(D^n + iI_{\sigma})$, $D^n + iI_{\sigma}$ is an infinitesimal wedge of type $R^n + i\Gamma_{\sigma}0$, $\sigma \in \Lambda$.

Recall the topological structure of $\mathcal{Q}(D^n)$. Let $f = [F] \in \mathcal{Q}(D^n)$, $F \in \tilde{\mathcal{O}}(D^n + iI) \# D^n)$. Then, by $P_{K,\varepsilon}(F) = \sup_{z \in \mathbb{R}^n + iK} |F(z)\exp(-\varepsilon |\operatorname{Re} z|)|, \varepsilon > 0$, $K \subseteq I \setminus \{0\}$, is defined the family of semi-norms; $\tilde{\mathcal{O}}((D^n + iI) \# D^n)$ is a Fréchet and Montel space, as well as $\mathcal{Q}(D^n)$.

Let $f = [F] \in \mathcal{Q}(D^n)$. Then we associate to $f, f(x) \cong \sum_{\sigma \in A} sgn\sigma F_{\sigma}(x + i\Gamma_{\sigma}0), F_{\sigma} \in \tilde{\mathcal{O}}(D^n + iI_{\sigma})$ (cf. [3], Theorem 8.5.3 and Definition 8.3.1).

The Fourier transform on $\mathcal{Q}(D^n)$ is defined

by the use of functions $\chi_{\sigma} = \chi_{\sigma_1} \dots \chi_{\sigma_n}$, where $\sigma_k = \pm 1, k = 1, \dots, n, \sigma = (\sigma_1, \dots, \sigma_n)$ and $\chi_1(t) = e^t / (1 + e^t), \chi_{-1}(t) = 1 / (1 + e^t), t \in R$. Let $u(x) \cong \sum_{\sigma \in \Lambda} U_{\sigma}(x + i\Gamma_{\sigma}0) = \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda} (\chi_{\tilde{\sigma}} U_{\sigma}) (x + i\Gamma_{\sigma}0)$, where $\chi_{\tilde{\sigma}} U_{\sigma} \in \mathcal{O}(D^n + iI_{\sigma}), \sigma, \tilde{\sigma} \in \Lambda$ and decreases exponentially along the real axis outside the closed $\tilde{\sigma}$ -th orthant.

The Fourier transform of
$$u$$
 is defined by
 $\mathscr{F}(u) \cong \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda} \mathscr{F}(\chi_{\tilde{\sigma}} U_{\sigma}) (x - i\Gamma_{\tilde{\sigma}} 0)$

$$= \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda} \int_{\mathrm{Im} z = y^{k}} e^{-iz\zeta} (\chi_{\tilde{\sigma}} U_{\sigma}) (z) dx, y^{k} \in I_{\sigma},$$

where $\mathscr{F}(\chi_{\tilde{\sigma}} U_{\sigma}) \in \tilde{\mathcal{O}}(D^n - iI_{\tilde{\sigma}})$ and $\mathscr{F}(\chi_{\tilde{\sigma}} U_{\sigma})$ decreases exponentially along the real axis outside the closed σ -orthant.

An infinite-order differential operator $J(D) = \sum_{|\alpha| \ge 0} b_{\alpha} D^{\alpha}$ with $\lim_{|\alpha| \to \infty} \sqrt{|b_{\alpha}| \alpha!} = 0$ is called a local operator.

2. Convergence in $\mathcal{Q}(D^n)$. Let E be a Fréchet space with an increasing family of seminorms $\{P_i; i \in N\}$ and let F be a closed subspace of E. Denote by \tilde{x} an element of the quotient space E/F defined by $x \in E$; seminorms which induce the topology in E/F are given by $p_i(\tilde{x}) = \inf_{y \in F} P_i(x + y), i \in N$. In the sequel Γ will be a convex cone in \mathbb{R}^n .

Proposition 1. A necessary and sufficient condition that a family $\{\tilde{x}_h; h \in \Gamma\}$ converges to \tilde{x} in E/F as $||h|| \to \infty$, $h \in \Gamma$, is the existence of a family $\{u_h \in E; h \in \Gamma\}$ such that u_h belongs to the class \tilde{x}_h for every $h \in \Gamma$ and u_h converges to u in E as $||h|| \to \infty$, $h \in \Gamma$, where u belongs to the class \tilde{x} .

Proof. The sufficiency is trivial. Suppose that \tilde{x}_h converges to \tilde{x} in E/F as $||h|| \to \infty$, $h \in \Gamma$. Then for every $m \in N$ there exists $t_m > 0$ such that $p_m(\tilde{x}_h - \tilde{x}) = \inf_{y \in F} P_m(x_h - x + y) < 1/m$, $||h|| \ge t_m$, $h \in \Gamma$; $\{t_m; m \in N\}$ is a monotone increasing sequence which tends to infinity as $m \to \infty$. We construct a looked-for

¹⁹⁹¹ Mathematics Subject Classification: 46F15.

family $\{u_h; h \in \Gamma\}$ as follows. For every $h \in \Gamma$, $\|h\| \ge t_{m_0}$, there exists $y_{m_0,h} \in F$ such that $P_{m_0}(x_h - x + y_{m_0,h}) < 2/m_0$, $\|h\| \ge t_{m_0}$, $h \in \Gamma$. Then $u_h = x_h + y_{m,h}$, for those $h \in \Gamma$ for which $t_m \le \|h\| < t_{m+1}$, $m \in N$. The verification of the assertion simply follows.

This proposition implies the next one.

Proposition 2. Let I be a convex neighbourhood of $0 \in \mathbb{R}^n$ and $I_{\sigma} = I \cap \Gamma_{\sigma}, \sigma \in \Lambda$. Let $\{f_h; h \in \Gamma\}$ be a family in $\mathcal{Q}(D^n)$ such that $f_h \cong \sum_{\sigma \in \Lambda} G_{h,\sigma}(x + i\Gamma_{\sigma}0)$, where $G_{h,\sigma} \in \tilde{\mathcal{O}}(D^n + iI_{\sigma}), h \in \Gamma, \sigma \in \Lambda$.

A necessary and sufficient condition that f_h converges in $\mathcal{Q}(D^n)$ to $f \cong \sum_{\sigma \in \Lambda} G_{\sigma}(x + i\Gamma_{\sigma}0)$ as $\|h\| \to \infty, h \in \Gamma$ is the existence of families $\{F_{h,\sigma}; h \in \Gamma\} \subset \tilde{\mathcal{O}}(D^n + iI_{\sigma}), \sigma \in \Lambda$, such that

1) $F_h = (F_{h,\sigma})$ belongs to the same class as $G_h = (G_{h,\sigma}), h \in \Gamma$;

2) For every $\sigma \in \Lambda$, $F_{h,\sigma}$ converges to F_{σ} in $\vec{\mathcal{O}}(D^n + iI_{\sigma})$ as $||h|| \to \infty$, $h \in \Gamma$,

where $F = (F_{\sigma})$ belongs to the same class as $G = (G_{\sigma})$.

One can find in [3, p. 408] the sufficiency of the given condition.

Theorem 1. Let $\{f_h; h \in \Gamma\}$ be a family in $\mathcal{Q}(D^n)$ of the form $f_h = [G_h], G_h \in \tilde{\mathcal{O}}((D^n + iI) \# D^n), h \in \Gamma$, such that f_h converges to f in $\mathcal{Q}(D^n)$ as $||h|| \to \infty, h \in \Gamma$.

Then for every sequence $\{h_{\nu}; \nu \in N\}$ in Γ , such that $||h_{\nu}|| \to \infty$ as $\nu \to \infty$, there exists an elliptic local operator J(D) and a sequence of functions $\{q_{h_{\nu}}; h_{\nu} \in \Gamma, \nu \in N\}$ with the properties:

a) For every $\varepsilon > 0$ there exists $C_{h_{\nu},\varepsilon} > 0$, $\nu \in N$ such that $|q_{h_{\nu}}(x)| \leq C_{h_{\nu},\varepsilon} \exp(\varepsilon |x|)$, $x \in R^{n}$, $\nu \in N$ $(q_{h_{\nu}}$ is slowly increasing). Thus $q_{h_{\nu}}$ defines an element of $\mathcal{Q}(D^{n})$, denoted by $\ell q_{h_{\nu}}$ for every $h_{\nu} \in \Gamma$.

b) $q_{h_{\nu}}$ converges in $\mathscr{E}(\mathbb{R}^n)$ to q as $||h_{\nu}|| \to \infty$, $h_{\nu} \in \Gamma$, $\nu \to \infty$, where q is also slowly increasing and defines $\ell q \in \mathscr{Q}(\mathbb{D}^n)$. Moreover, for every ε .

$$\sup_{x \to \infty} \| q_{h_{\nu}}(x) - q(x) \| e^{-\varepsilon |x|} \to 0, \ \nu \to \infty$$

c) $f_{h_{\nu}} = J(D) \ell q_{h_{\nu}}, h_{\nu} \in \Gamma, \nu \in N \text{ and } f = J(D) \ell q.$

(Note, q in b) and c) is the same for every sequence $\{q_{h_{\nu}}; h_{\nu} \in \Gamma, \nu \in N\}$).

Proof. We will use some ideas of Kaneko's papers [1] and [2]. Proposition 2 implies that there exists a family $\{\tilde{F}_h; h \in \Gamma\} \subset \tilde{\mathcal{O}}((D^n + iI) \# D^n)$ such that $f_h = [\tilde{F}_h], f = [\tilde{F}]$ and \tilde{F}_h converges to

 $\tilde{F} \text{ in } \tilde{\mathcal{O}}((D^n + iI) \# D^n).$ Let $f_n \cong \sum_{\sigma \in A} F_{h,\sigma}(x + i\Gamma_{\sigma}0)$, where $F_{h,\sigma} = \operatorname{sgn}\sigma \tilde{F}_{h,\sigma}$. Its Fourier transform is defined by $\mathfrak{F} f \cong \sum \sum \mathfrak{F}(\gamma_{\sim}F_{-})(\xi - i\Gamma_{\circ}0)$

$$\mathcal{F}_{h} \cong \sum_{\sigma \in \Lambda} \sum_{\widetilde{\sigma} \in \Lambda} \mathcal{F}(\chi_{\widetilde{\sigma}} F_{h,\sigma}) (\xi - i \Gamma_{\widetilde{\sigma}})$$
$$= \sum_{\sigma \in \Lambda} \sum_{\widetilde{\sigma} \in \Lambda} R_{h,\sigma,\widetilde{\sigma}} (\xi - i \Gamma_{\widetilde{\sigma}}),$$

where $R_{h,\sigma,\tilde{\sigma}} \in \hat{\mathcal{O}}(D^n - iI_{\tilde{\sigma}})$ and $R_{h,\sigma,\tilde{\sigma}}$ decreases exponentially along the real axis outside the closed σ -th orthant for every $h \in \Gamma$. By Proposition 2, $R_{h,\sigma,\tilde{\sigma}}$ converges in $\tilde{\mathcal{O}}(D^n - iI_{\tilde{\sigma}})$ to $R_{\sigma,\tilde{\sigma}} = \mathcal{F}(\chi_{\tilde{\sigma}}F_{\sigma})$ as $||h|| \to \infty$, $h \in \Gamma$.

Let $\{h_{\nu}; \nu \in N\}$ be a sequence in Γ such that $||h_{\nu}|| \to \infty$ as $\nu \to \infty$. Since $\tilde{\mathcal{O}}(D^n - iI_{\bar{\sigma}})$ is a Montel space, the set $A_{\sigma,\bar{\sigma}} = \{R_{\sigma,\bar{\sigma}}, R_{h_{\nu},\sigma,\bar{\sigma}}; h_{\nu} \in \Gamma, \nu \in N\}$ is a compact set in $\tilde{\mathcal{O}}(D^n - iI_{\bar{\sigma}})$ for every σ and $\hat{\sigma}$.

First we shall prove the existence of a sequence $\{\varphi_j; j \in N\}$ of positive monotone increasing functions defined on $R_+ \cup \{0\}$ and a sequence of positive constants $\{C_j; j \in N\}$ which do not depend on σ , $\tilde{\sigma} \in \Lambda$ and $h_{\nu} \in \Gamma$, $\nu \in N$ and:

(1) a)
$$\varphi_j(0) = 1, \ \varphi_j(r) \to \infty \text{ as } r \to \infty, \ j \in N;$$

b) $|R_{h_{\nu},\sigma,\tilde{\sigma}}(\zeta)| \leq C_j \exp(|\zeta|/\varphi_j(|\zeta|), \zeta \in R^n + iK_{\tilde{\sigma},i}, \zeta \in \mathbb{R}^n + iK_{\tilde{\sigma},i}, \zeta \in \mathbb{R}^n + iK_{\tilde{\sigma},i}, \zeta \in \mathbb{R}^n$

where $\{K_{\tilde{\sigma},j}; j \in N\}$ is a sequence of compact sets which exhausts $-I_{\tilde{\sigma}}$ from the inside.

Let
$$j \in N$$
. Put
 $B_j(r) = \sup_{\sigma, \tilde{\sigma}} \sup_{|\zeta| = r, \zeta \in \mathbb{R}^n + iK_{\tilde{\sigma}}, j} \sup_{V \in A_{\sigma, \tilde{\sigma}}} |V(\zeta)|,$
 $\psi_j(r) = \frac{r}{\log(e + B_j(r))}, r > 0.$

The function $B_j(r)$, $r \in R_+$, is well defined because the sets $A_{\sigma,\tilde{\sigma}}$ and $\{\zeta \in R^n + iK_{\tilde{\sigma},j}; |\zeta| = r\}$ are compact and σ , $\tilde{\sigma}$ belong to the finite set. Moreover, for every $\varepsilon > 0$ there exists $C_{j,\varepsilon} > 0$ such that $B_j(r) \leq C_{j,\varepsilon} e^{\varepsilon r}$, $r \in R_+$, $j \in N$. Also, $\phi_j(r) > 0$ and $\phi_j(r) \to \infty$ as $r \to \infty$. Let $\{\phi_j(r) = \max(1, \inf_{s \geq -r} \phi_j(s)); j \in N\}$. We can replace the sequence in (1) by a unique function ϕ , with the property $Cr^{1/2} \leq \phi(r)$, as it is done in [1]. Now,

(2)
$$|R_{h_{\nu},\sigma,\widetilde{\sigma}}(\zeta)| \leq C'_{j} \exp(|\zeta|/\phi(|\zeta|))$$

 $\zeta \in R^{n} + iK_{\widetilde{\sigma},j}, j \in N.$

Note that ϕ does not depend on σ , $\tilde{\sigma} \in \Lambda$, $h_{\nu} \in \Gamma$, $\nu \in N$ and $j \in N$. There exists an elliptic local operator J(D) whose Fourier transform $J(\zeta)$ satisfies the estimate

(3)
$$|J(\zeta)| \ge C \exp\left(\frac{|\zeta|}{\phi(|\zeta|)}\right), |\eta| \le \frac{|\xi|}{\sqrt{3}} + 1, \xi \in \mathbb{R}^n$$
,
and $J(\zeta)$ is an entire function of infra-

exponential growth in ζ . (Lemma 1.2 in [2]).

The functions $R_{h_{\nu},\sigma,\tilde{\sigma}}(\zeta) / J^2(\zeta), \zeta \in \mathbb{R}^n - iI_{\tilde{\sigma}}, h_{\nu} \in \Gamma, \nu \in N, \sigma, \tilde{\sigma} \in \Lambda$, are holomorphic and (2) and (3) imply

(4)
$$|R_{h_{\nu},\sigma,\widetilde{\sigma}}(\zeta)/J^{2}(\zeta)| \leq C_{j} \exp(-\sqrt{|\zeta|}),$$

$$\zeta \in R^{n} + iK_{\widetilde{\sigma},j}, J \in N.$$

Let $\eta \in -I_{\widetilde{\sigma}}, h_{\nu} \in \Gamma, \nu \in N.$ Define
(5)
$$H_{h_{\nu},\sigma,\widetilde{\sigma}}(z) = \frac{1}{(2\pi)^{n}} \int_{Im\zeta=\eta} e^{iz\zeta} R_{h_{\nu},\sigma,\widetilde{\sigma}}(\zeta)/J^{2}(\zeta)d\xi,$$

$$z \in R^{n} + iI_{\sigma}.$$

By the definition of the Fourier transform, it follows that $H_{h,\sigma,\tilde{\sigma}} \in \tilde{\mathcal{O}}(D^n + iI_{\sigma})$ and decreases exponentially along the real axis outside the closed cone $\Gamma_{\tilde{\sigma}}^0$.

Let $\eta \in K_{\tilde{\sigma},j}, |\eta| \le 1, h_{\nu} \in \Gamma, \nu \in N, p \in N_0^n$. Then (4) and (5) imply

$$egin{aligned} &| \ H_{h_{\mathcal{V}},\sigma,\widetilde{\sigma}}^{(p)}(z) \ | \ \le \ C_{j}e^{-x\eta} \int\limits_{R^{n}}e^{-y\xi}e^{-\sqrt{|\zeta|}} \ | \ \zeta \ |^{|p|}d\xi\,, \ &z \in R^{n}+iI_{\sigma}\,. \end{aligned}$$

This implies that for every $h_{\nu} \in \Gamma$, $\nu \in N$, σ , $\tilde{\sigma} \in \Lambda$ and $p \in N_0^n$, $H_{h_{\nu},\sigma,\tilde{\sigma}}^{(p)}(z)$, $z \in \mathbb{R}^n + iI_{\sigma}$ is continuable to a continuous function $H_{h_{\nu},\sigma,\tilde{\sigma}}^{(p)}(x)$ up to the real axis. Moreover, this function satisfies $|H_{h_{\nu},\sigma,\tilde{\sigma}}(x)| \leq C_j \exp(|x|/j)$, $j \in N$ (it is slowly increasing) and belongs to $\mathscr{E}(\mathbb{R}^n)$. By the properties of $R_{h_{\nu},\sigma,\tilde{\sigma}}(\zeta)$ it follows that for $h_{\nu} \in \Gamma$

$$H_{h_{\nu},\sigma,\widetilde{\sigma}}(x) \to H_{\sigma,\widetilde{\sigma}}(x) = \frac{1}{(2\pi)^n} \int_{Im\zeta=\eta}$$

 $e^{iz\zeta} R_{\sigma,\tilde{\sigma}}(\zeta) / J^2(\zeta) d\xi \text{ as } ||h_{\nu}|| \to \infty, \nu \to \infty,$ in $\mathscr{E}(\mathbb{R}^n)$ and $H_{\sigma,\tilde{\sigma}}(x)$ is also slowly increasing. Also, for every ε

 $\sup_{x \in \mathbb{R}^n} \| H_{h_{\nu},\sigma,\widetilde{\sigma}}(x) - H_{\sigma,\widetilde{\sigma}}(x) \| e^{-\varepsilon |x|} \to 0, \ \nu \to \infty.$

By Carleman's Lemma ([3] p. 395) $H_{h_{\nu},\sigma,\tilde{\sigma}}(x + i\Gamma_{\sigma}0)$ and $H_{\sigma,\tilde{\sigma}}(x + i\Gamma_{\sigma}0)$ define Fourier hyperfunctions $\ell H_{h_{\nu},\sigma,\tilde{\sigma}}(x)$ and $\ell H_{\sigma,\tilde{\sigma}}(x)$, respectively. Hence

$$J^{2}(D) \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda} H_{h_{\nu},\sigma,\tilde{\sigma}}(x + i\Gamma_{\sigma}0)$$

= $\sum_{\sigma} F_{h_{\nu},\sigma}(x + i\Gamma_{\sigma}0) \cong f_{h_{\nu}}(x), h_{\nu} \in \Gamma,$
 $J^{2}(D) \sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda} H_{\sigma,\tilde{\sigma}}(x + i\Gamma_{\sigma}0)$
= $\sum_{\sigma} F_{\sigma}(x + i\Gamma_{\sigma}0) \cong f(x).$

Put

$$\sum_{\sigma \in \Lambda} \sum_{\tilde{\sigma} \in \Lambda} H_{h_{\nu},\sigma,\tilde{\sigma}}(x) = q_{h_{\nu}}(x), \ h_{\nu} \in I$$

and
$$\sum_{\sigma} \sum_{\tilde{\sigma}} H_{\sigma,\tilde{\sigma}}(x) = q(x).$$

Since $H_{h_{\nu}}$, $_{\sigma} = (\operatorname{sgn} \tilde{\sigma} \ H_{h_{\nu},\sigma,\tilde{\sigma}})$ converges in $\tilde{\mathscr{O}}((D^n + iU) \ \# \ D^n)$ to $H_{\sigma} = (\operatorname{sgn} \tilde{\sigma} H_{\sigma,\tilde{\sigma}})$, as $\| \ h_{\nu} \| \to \infty$, $h_{\nu} \in \Gamma$, $\nu \to \infty$, for every $\sigma \in \Lambda$. Proposition 2 and the continuity of a local operator imply $f_{h_{\nu}} = J^2(D)(\ell q_{h_{\nu}})$, $h_{\nu} \in \Gamma$, $\nu \in N$ and $f = J^2(D)\ell q$.

Properties of $q_{h_{\nu}}$ and q follow from the corresponding properties of $H_{h_{\nu},\sigma,\tilde{\sigma}}$ and $H_{\sigma,\tilde{\sigma}}$.

Remark. As we mentioned at the beginning of the proof of Theorem 1, we have that

$$\tilde{F}_h \text{ converges to } \tilde{F}, \|h\| \to \infty, \\
h \in \Gamma \text{ in } \tilde{\mathcal{O}}((D^n + iI) \# D^n).$$

If we assume that there exists h_0 and a closed cone $\Gamma_1 \subseteq \Gamma$ such that the mapping

 $\Gamma_1 \cap \{h ; \|h\| \ge h_0\} \to \tilde{\mathcal{O}}((D^n + iI) \# D^n), h \to \tilde{F}_h,$ is continuous, then $A_{\sigma,\tilde{\sigma}} = \{R_{\sigma,\tilde{\sigma}}, R_{h,\sigma,\tilde{\sigma}}; h \in \Gamma_1, \|h\| \ge h_0\}$ is a compact set. In this case we have that there exists a unique elliptic local operator J(D) and a family of functions $\{q_h; h \in \Gamma_1, \|h\| \ge h_0\}$ with the properties given in a), b), and c) for $h \in \Gamma_1, \|h\| \ge h_0$.

References

- A. Kaneko: On the structure of Fourier hyperfunctions. Proc. Japan Acad., 48A, 651-653 (1972).
- [2] A. Kaneko: Representation of hyperfunctions by measures and some of its applications. J. Fac. Sci. Univ. Tokyo, Sec. IA, 19 (3), 321-352 (1972).
- [3] A. Kaneko: Introduction to Hyperfunctions. Kluwer Academic Publishers, Dordrecht (1988).
- [4] T. Kawai: On the theory of Fourier hyperfunctions and its applications to partial differential equations with costant coefficients. J. Fac. Sci. Univ. Tokyo, Sec. IA, 17, 467-517 (1970).
- [5] M. Sato: Theory of hyperfunctions. Sûgaku, 10, 1-27 (1958) (in Japanese).
- [6] V. V. Zharinov: Laplace transform of Fourier hyperfunctions and other close classes of analytical functionals. Teor. Math. Phys., T. 33, N. 3, 291-308 (1977) (in Russian).

No. 3]