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1. Introduction.
1.1. Let G be a real reductive linear Lie group,
K a maximal compact subgroup of G, and 0 the
corresponding Cartan involution. Suppose that H
is a closed 0-stable subgroup of 15 with finitely
many connected components. Then the coset
space G/H is called a homogeneous manifold of re-

ductive type. Riemannian symmetric spaces (e.g.
GL(n, R)/O(n)), semisimple Lie group man-

ifolds (e.g. GL(n, R)/{e} - GL(n, lg) GL(n,
R)/diag GL(n, R)), or more generally, reduc-
tire symmetric spaces (e.g. GL(n, 1) /O(p, n
p)), and semisimple orbits in semisimple Lie
algebras under the adjoint action (e.g. GL(n, ) /

GL(nl, lg) x x GL(nk, lg) (nj= n)) are
typical examples of homogeneous manifolds of re-

ductive type. Various geometric structures of
homogeneous manifolds of reductive type may be
found in the survey [7] and references therein.
1.2. If G/H is of reductive type, then there ex-

ists a G-invariant measure d/z on G/H, which is
unique up to a scalar multiple. Then we have a

continuous representation of G on the Banach
Lp Lp

space (G/H d/z) =- (G/H) (p 2 1) by left
translations. A fundamental problem in L-analysis on a homogeneous manifold G/H is to
construct an irreducible representation of G in a

closed G-invariant subspace of L(G/H). In
particular, if p 2, then G acts unitarily on the
Hilbert space L2(G/H) and an irreducible rep-
resentation Jr of G is called a discrete series repre-
sentation for G/H, provided Jr is realized in a
closed G-invariant subspace of L2(G/H). Dis-
crete series representations are automatically un-

itary and we denote by Disc(G/H) the unitary
equivalence classes of discrete series representa-
tions for G/H. By definition, Disc(G/H) c ,
where denotes the unitary dual of G.
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1.3. It is a celebrated work due to Harish-Chandra
that Disc(G/{e}) 4= 0 iff rank G rank K.
Generalizing this, Flensted-Jensen, Matsuki and
Oshima proved in [1] and [12] that Disc(G/H)
4: iff

(1.3.1) rank G/H rank K/H r"l K
for a reductive symmetric space G/H (see {}3.2
for definition).
1.4. However, except for reductive symmetric
spaces, our current knowledge about the exist-
ence of discrete series representations for G/H

(or more generally, the existence of irreducible
representations in L’(G/H)) is very poor. This

is partly because the known methods relied on

i) the commutativity of G- invariant differential
operators on G/H,

ii) a Caftan decomposition G KAH ([1], {}2),
iii) the dual space Ge/H (see [2] for the nota-

tion).
In our more general setting where G/H is of

reductive type, (i) may fail, and neither (ii) nor

(iii) always exists.

Thus, we need a new method to investigate
the L-analysis on G/H for a general homo-
geneous manifold of reductive type. Our approach
in this paper is based on the recent theory of the
discrete decomposable restriction of unitary rep-

resentations ([5] and [(3]), and on a comparison
theorem of two homogeneous manifolds (Theorem
2.7) together with well-developed results on re-
ductive symmetric spaces ([11, [21, and [121).

2. Invariant measure on homogeneous man-

ifolds of reductive type.
2.1. For a reductive symmetric space G/H,
there is a generalized Caftan decomposition
"G KAH" with A - R, which is an analog of
the polar coordinate in the Euclidean space.
Then, the corresponding integration formula ([1],
Theorem 2.6) is a basic tool on harmonic analy-
sis on a symmetric space G/H, because the
if-estimate of functions on G/H can be studied
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by the decay condition along the abelian part c C(G /H ’) for > ’.
A R Corollary 2.4. Let G/H be a homogeneous

Unfortunately, there does not always exist manifold of reductive type. If 1 <--p <--oo, then we

an analog of a generalized Cartan decomposition have
G- KAH in our general setting where G/H is C(G/H ) c LP(G/H) ifp > VG/H.
of reductive type, as one can easily observe by We put C(G/H;) "-C(G/H;)
an argument of dimension (e.g. the case where C(G/H). We say that an admissible irreduci-

dim H is very small), ble representation zr of G is of decay type for
Thus, in order to give an LP-estimate of G/H if the underlying (g, K)-module zc/ can be

functions on G/H, we need a nice estimate of the realized as a subrepresentation of C(G/H ;).
invariant measure on G/H without using the

If rc is of decay type e for G/H with e > G/H,KAH decomposition, which is the main goal of
this section, then :r/ is unitarizable and Disc(G/H) =/: by

Let us fix some notation. Let g- If / be a Corollary 2.4.
Cartan decomposition of the Lie algebra fl of G 2.5. Next, we give a comparison theorem of in-

corresponding to a Cartan involution 0 of G, and variant measures of two homogeneous manifolds

we fix an Ad(G)-invariant non-degenerate sym- G’/H" c G/H. Consider the following setting:

metric bilinear form B on g such that B If x is G is a real reductive linear Lie group with a Car-
negative definite, B 1 is positive definite and tan involution 0; both H and G’ are 0-stable
that If and p are orthogonal to each other (e.g. we closed subgroups of G with finitely many con-

can take B to be the Killing form if g is semisim- nected components. Let H’ H G’. Then
pie). We write xll (x  )for the induced G’/H" is also of reductive type. We write e"

norm on p. G’/H" c__. G/H for the natural embedding, and

2.2. Suppose G/H is a homogeneous manifold C(G/H) C(G’/H’) for the pullback of
of reductive type. We write f) for the Lie algebra continuous functions.
of H. Then the restriction B 1 is non- 2.6. In the setting of {}2.5, we write g’ and
degenerate. Let +/- be the orthogonal corn- for the Lie algebras of G’ and H’, respectively.
plementary subspace of [? in g. Then, we have a We put p’’= g’ ffl p, and define t’+/- to be the
direct sum decomposition fl -t- D l orthogonal complement of [9 in g’ with respect to

Theorem 2.2. Let G/H be a homogeneous B 1,,. Then, we have direct sum decompositions

manifold of reductive type. Then there exists a g’--’@ f)’+/- and p’-- ()’ if/ p’)@ (’l ffl p’). We
non-negative function )+/- f3 R such that define

fa/Hf(x)dl2(z)- f flcf(keX.H)6(X)dkdX (2.6.1) b(G’/H’;G/H)"-sin/ rc\
(q’ ( P" f) p)"

Here (0<)@(q’ffl p’ if/ p)k<--)is the angle
for anyf Cc(G/H).

Here dk is the bi-invariant measure on K and dX between the subspaces of p, q’ ffl p’ and ffl p.
is the Lebesgue measure on p. Furthermore, Lemma 2.6. If G /H is noncompact, then

there exist constants a/H > 0 and C > 0 such b(G’/H’; G/H) > O.
that 2.7. Here is a comparison theorem that gives an

6(X) < C exp(a/H Nil) for ay x estimate of the decay of a function on G/H res-

Remark 2.3. One can prove that there ex- tricted to a submanifold G’/H’

ists a constant v (G) such that a/H -< for Theorem 2.7. Let b b(G’/H’;G/H) be

any 0-stable closed subgroup H with finitely the constant given in (2.6.1). Then

many connected components.
2.4. Given R, we introduce a subspace of
continuous functions on G/H"

C(G /H )’- {f C(G /H) sup sup
kK XO

f(k exp X)exp(e xll) <
There is an obvious inclusive relation C(G/H;)

C(G/H;e) c C(G’/H’;b) for any 20.
Corollary 2.8. Retain the setting of Theorem

2.7. Let v’/g" be the constant given in Theorem

2.2. Then for any 1 <_ p N oo, we have
C(G/H;) cL(G’/H’) ifbp>
3. Irreducible representations in L(G/H).

In this section, we investigate a sufficient condi-
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tion for the existence of irreducible represents- dominant chamber with respect to zfil+(lf, t}. We
tions realized in closed subspaces of Lf{/H). denote by /+{u VI pc} the cone in ---t* de-
In particular, we construct new discrete series fined by the/+-span ofz!l{u VI Pc,
representations which play a fundamental role in Fact 3.3. Suppose (G, G’) is a reductive

the non-commutative harmonic analysis on G/H. symmetric pair defined by an involution v in a stan-
3.1. Suppose G’ c G are real reductive Lie dard position with respect to A +(f, t). Suppose q is a

groups with maximal compact groups K’ K. O-stable parabolic subalgebra in a standard position
We say that 7c is K’-admissible if with respect to A +(, t). Then the following three

dim Homn,(z, 7c In,) < oo for any v ’. conditions on (, G, G’) are equivalent"

Then we also say that the underlying (tic, K)- 1) R+(u pc} gl v/-ll(t-) *- {0}.
module 7ct; is K’-admissible. Suppose we are in 2) The restriction of A(,) to K" is K’-admissible.
the setting 2.5 and 2.6. Let b- b(G’/H’; G/H). 3) A(2) is decomposed into an algebraic sum of
Here is a key lemma in the proof of Theorem 3.5, irreducible (’, K’)-modules.
the main result in this section: Proof. See [5], Part I, Theorem 3.2 for (1)

Lemma 3.1. Let 7c be K’-admissible. If =a (2); and [5], Part III, Theorem 4.2 for other
rc is of decay type for G/H, then there exists z implications. [-]

" that is of decay type b for G’/H’. 3.4. Let (G, H) and (G, G’) be reductive sym-

This lemma follows directly from an algeb- metric pairs defined by ivolutive automorphisms
raic result in representation theory ([5], Part III, a and z of G, respectively, which are in a stan-

Proposition 1.6). dard position with respect to Zl+(f, t). We em-

3.2. Let be a Caftan subalgebra of I. We fix a ploy an analogous notation of 3.2 for a. If
positive system A+(t, t). Let z" be an involutive (1.3.1) is satisfied, then

-a
is a maximal abelian

automorphism of G, and G’ an open subgroup of subspace in ft We denote by W(fl,
G’- {g G’zg-g}. Then (G, G’) is called W(I, -a) the Weyl groups of
a reductive symmetric pair. The homogeneous man- (f, t-a), respectively. Fix a positive system
ifold G/G’ is called a reductive symmetric space Y+(.q, -a) which contains +(t, t-a). A 0-
(or a semisimple symmetric space if G is semisim- stable parabolic subalgebra cl cl(X) [c-t- u
ple). We say that z is in a standard position with is attached by a strictly dominant element X
respect to A+(f, t)if the following four condi- with respect to +(ft, t-a)(see {}3.3).
tions are satisfied" For each w W(f, -a) \ W(fl, t-a), we choose a

(3.2.1) z0- 0z. representative mw K such that Ad(mw)X is

(3.2.2) z(t)- t. dominant with respect to Zl+(f, t), and define a

(3.2.3) is a maximal abelian subspace in f-r. 0-stable parabolic subalgebra cl Ad(rnw)Ct
(3.2.4) {ozlt- c A + (t, t) } \ {0} defines a posi- [c / uw, where u Ad(new) u.
tire system +(1, -) of (I, t-). 3.5. We write pro. flc--+ fl c for the natural

Here, we wrote m {X m" zX-- --X} projection. We denote by Ass(rr) fl c the
Kfor a subspace m of fl. associated variety of a (flc, )-module rr of fi-

3.3. Given an element X v/- i t, we define a nite length.
0-stable parabolic subalgebra Theorem 3.5. Let G/H be a reductive sym-

c- [c 4- u I(X) C -- u(X) ( c) metric space satisfying (1.3.1). Retain the notation

such that [c and u are the sum of eigenspaces in {}3.4. We assume that there exists w
with 0 and positive eigenvalues of ad(X) W(lf, -a) \ W( -a) such that

End(c), respectively. Then [c is the complex- R+(u VI pc} VI v/- l(t-) *- {0).
ification of the Lie algebra of L Zc(X), the We put H G" N xHx -1

for x K. Then
centralizer of X in G. We write A,(,)for the the following statements hold"
Zuckerman’s derived functor (ft, K)-module for 1) For any x K. there exists an irreducible (c,
a metaplectic L--character C in the good range K’)-module rc such that
(see [3]). (3.5.1)Ass(re) pr_o, Ad(Kc) (u V/ Pc),

We say that ct is in a standard position for a (3.5.2) Hom(,b./,)(r, C(G/H)
fixed positive system ZI+(l, t) if X sits inside a gl L(G’/H)) :/: {0}.
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In particular, Disc(G’/H) 4:0 for any x K.
2) Assume moreover that Z(t-) is compact. Then
Disc (G’ /H) Disc (G’) :/: 0 for any x K.

The point here is that G’/H gives different
homogeneous manifolds of reductive type as x
K varies. In general, G’/H is non-symmetric. A
recent study of the double coset decomposition
G\ G/G by Matsuki ([10] and [lid helps us to
compute explicitly the isotropy subgroup H.

Example 3.6. The assumptions of Theorem
3.5 are satisfied, if the triple of Eie groups
(G, H, G’) -= (G, G, Gr) is one of the follow-
ing cases:
(U(2p, 2q), Sp(p, q), U(i,j) x U(2p- i,2q-j)),
(O(p, q), O(m) O(p m, q), O(p, q r) O(r)),
(U(p, q), U(m) U(p m, q), U(p, q r) U(r)),
(Sp(p, q), Sp(m) Sp(p m, q), Sp(p, q- r) Sp(r)),

where 0 <-- <_ 2p, 0 <--j <-- 2p, 0 <-- 2m <_p and
0 <_ r<_ q. We note that a does not commute
with v if or j is odd in the first case.

Remark 3.7. The special case where dim H
+dimG dimG + dim(H f G’) (and x-- e)
was studied in [5], Corollary 5.6, where we dealt
with so-called the (non-symmetric) spherical
homogeneous spaces.

Example 3.8. The homogeneous manifolds
G /H-- O(4m, n)/U(2m, j), (0 <_ 2j <_ n)

admit discrete series representations. This was

previously known when n- 2j and 2j-- 1,
where G/H is a semisimple symmetric space,
and a non-symmetric spherical homogeneous
space, respectively. Other cases are new.

4. Holomorphic discrete series representa-
tions.
4.1. In this section, we investigate a nice subset
of Disc(G/H), namely, "holomorphic discrete
series representations for G/H". As in Theorem
3.4, analogous results in this section hold for
L-representations (1 <- p <_ co), but we restrict
to the case of p 2 for simplicity.

We assume that G/K is an irreducible
Hermitian symmetric space. Equivalently, G is

simple and the center c(l) of f is one dimensional.
Then we can take Z c(f) so that

c-tc@p+@p
are 0, v/- 1 and --v/- 1 eigenspaces of adZ.
For re @ (. we say that rr is a highest weight
module if there exists a non-zero vector in the
underlying (g, K)-module annihilated by p+. We
denote by h.w. (c d:)the unitary equivalence

class of irreducible unitary highest weight mod-
ules. Then an element of Disc(G/H) A Gh.w. is

called a holomorphic discrete series representation

for G/H. This terminology coincides with the
usual one if H- {e}. Lowest weight modules and
anti-holomorphic discrete series representations
are defined similarly with p+ replaced by p-.

Suppose v is an involutive automorphism of
G commuting with 0. Since vc(lf) c(tf), there are
two exclusive possibilities"
(4.1.1) vZ Z,
(4.1.2) vZ- Z.
We note that the induced action of v on G/K is

holomorphic for (4.1.1); anti-holomorphic for

(4.1.2).
4.2. Retain the setting of 4.1. Let a be an in-

volutive automorphism of G satisfying aO-
and aZ- Z (see (4.1.2)), and x K. We con-
sider the following two settings:

-1
Setting 1" Lx {g G’xa(g)x -g}.
Setting 2: Let r be an involutive auto-

morphism of G satisfying (4.1.1) and G"- G.
We put H[ G xGx-1

Here is an existence theorem of holomorphic
discrete series representations for homogeneous
manifolds of reductive type.

Theorem 4.2. For any x K, we have
# (Disc(G/Lx) Disc(G) G..)-co

in Setting 1,
# (Disc (G’/H Disc (G’)

in Setting 2.
4.3. A very special case (i.e. x-- e in Setting 1)
leads to a new and elementary proof of the fol-
lowing result due to lafsson and Orsted:

Corollary 4.3 (see [13]). There exist (infinite-
ly many) holomorphic discrete series representations

for a psend-Riemannian symmetric space of Hermi-

tian type.
4.4. Choosing x K, r and a, we can obtain a

number of new ho!omorphic discrete series repre-
sentations for homogeneous manifolds of reduc-
tive type (G/Lx and G’/H[). For instance, we

have"
Example 4.4. The homogeneous manifolds

G/H Sp(2n, R) / (Sp(no, C) x GL(nl, C)
GL(n, C)) (n- n)

admit holomorphic discrete series representa-
tions. We note that G/H is a semisimple sym-
metric space if and only if n

0, which is previously the known case.



66 T. KOBAYASHI [Vol. 73(A),

[11

[41

I51

A detailed proof will appear in [8] and [9]. [71
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