No. 4]

Proc. Japan Acad., 73, Ser. A (1997) 49

Periodic Solutions of the Heat Convection Equations in Exterior Domains
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Faculty of Science, Japan Women’s University
(Communicated by Kiyosi ITO, M. J. A., April 14, 1997)

1. Introduction. Let 2 = K° < R’ where
K is a compact set whose boundary 0K is of
class C% We put 02 =I'= oK, I'=T x (0, )
and £ = 2 X (0, ©). Then we consider the
periodic problem for the heat convection equation
(HCE):
u,+ uVyu=—(Vp)/p+ {1 —a(d—

) O)}g + vdu in @2,
divu =0 in Sg,
0, + (uV)6= kA6 in 9,

Q) ulx, d|F=0, 0, t) = x, H (>0),
lim #(x) =0, lim 6(x) =0, for t > 0,

|Z|—00 |z |—00
(3) u(C, T)=u(,0),6,T)=206(,0.
Here u = u(x) is the velocity vector, p = p(x) is
the pressure and 6 = 6(x) is the temperature; v,
k, o, 0o and g = g(x) are the kinematic viscos-
ity, the thermal conductivity, the coefficient of
volume expansion, the density at § = ©, and the
gravitational vector, respectively. As for the ex-
terior problem of (HCE), Hishida [2] showed the
global existence of the strong solution for the ini-
tial value problem (IVP) in the case that K is a
ball. Recently, Oeda-Matsuda [7] showed the ex-
istence and uniqueness of weak solutions of (IVP)
when K is a compact set with the boundary of
class C® Moreover, Oeda [10] obtained the sta-
tionary weak solutions for the similar exterior
domain to that of [7]. In [7] and [10], we used “the
extending domain method” to get weak solutions.
Namely, it is expected that the exterior domain £
can be approximated by interior domains £, =
B, N Q (B, is a ball with radius # and center at
0) as n— o (see Ladyzhenskaya [3]). The pur-
pose of the present paper is to show the exist-
ence of periodic weak solutions of (HCE) by using
“the extending domain method”.

2. Preliminaries. We make several assump-
tions: (Al) w, < int K (w, being a neighbourhood
of the origine O) and K € B = B(0, d),; where
B is a ball with radius d and center at O. (A2)
0Q =TI = 0K € C’. (A3) g(x) is a bounded and
continuous vector function in R3\w0. Moreover

there exist R, > 0, Cg > 0 such that lg| <

CR0/| x |% "¢ for | x| = R, (¢ > 0 is arbitrary).
(Ad) x € C*(I' X [0, ©)) and is periodic with
respect to ¢ with period T.

Remark 1. Thanks to (A3), we see g€

L*(Q) for p = %

We prepare a lemma which gives us an auxiliary
function (see [1] p. 131 and [11] p.175):

Lemma 2.1. There is a function 6(x, t)
which possesses the following properties (i) — (iv):
() 8= x on I (ii) 6(x, ) € CX(RD) for any fix-
ed t and 0, 0, are continuous for t € [0, T1. (iii)
6 is periodic in t with period T. (iv) For any
e>0 and p > 1, we can retake 0, if necessary,
such that sup,cg,pll 0 Il < e.

Now we make a change of variable: = b+
5, and after changing of variable, we use the
same letter 6. Equations (1), (2), and (3) are
transformed to the following:

u, + (u-V)u= — (Vp) /o — abg + vAu
+{1—a@—06)lg in L2,
(4) divu =0 in 2,
6, + (uV)0=rd6— (uV)6— 6,
+ k46 in Q,
5)  ulp=0,6|r=0, 1lilm u(x) =0,
lim 6(x) = 0,

|x| =00

6) u(C, T)=u(,O0), 6(, T) = 6(, 0).
We put G = Qor 2,, G = G x [0, T] and
GUT'=(GUTI) X [0, T]. Then we write

W (G) = {u; D*u € L’(G), |a| <k}, W,"(G)
= the completion of Cq(G) in W*?(G),
D,(®) ={p € C,(®);dive =0}, DG ={¢

€ Co,(GUTI); ¢(I') =0},

H,(G) (resp. H,(G)) = the completion of D,(G)
in L*(G) (resp. W"*(G)),

H,(2,) = the completion of D(R,) in W"*(R,)
(it turns out H, (2,) = W,*(2,),

V(resp. W) = the completion of D,(2) (resp.
Q(Qz) in “ ‘ ”N(g)- Wflel‘e Il u “N(Q) = ” V?f "1:.2(9)‘
D,(G) = {p € C,(G);dive =0}, DG = {¢
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e CrGUTY; o) =0},
D, (&) ={p € C,(B); 0, T) = ¢lx,0)}, D, (G)
={p e DG);¢x, T) = ¢ (z,0)),
L0, T; H}®,)) = {us L0, T; H/(Q));
u(x, T) = u(x, 0) ae. x € Q,},
L0, T; Hy(R,)) = {6 € L*(0, T ; H} (2));
0(x, T) = 6(x, 0) ae. x € Q,},
L0, T;L°(@) = {f € L*(0, T;L°(2,));
flx, T) =f(x,0) ae. x € 2.

We state some inequalities. (see Chap. I of
(3]).

Lemma 2.2. Assume the space dimension is
3. G is permitted unbounded. Then

(i) Foru € WOI'Z(G) (or Vor W), we have

(7) lullee < cllVullzg, wherec = (48)"°.

(ii) (Holder’s inequality) If each integral
makes sense, then we have
1,1
(8) | (G Vv, we | <3277 [upo gy
” Vo ”L"(G) ’ " w “L’(c),
here p r > 0 and 1 + 1 + 1 1
where p, q, and -+ —+ — = 1.
a4 p T a
We state another lemma (see [3]):

Lemma 2.3. (Friedrichs). Suppose G is a
bounded domain in R" and its boundary 0G is of
class C®. Let us take an orthonormal basis
{w,) o, of L*(G). Then for any € > 0, there exists
a number N, such that

Ns
9 Nl < 2, w)? + el ulfime
for all u € W, (G,

2n
n+2(n22),m21(n—1)and

N, is independent of u.

3. Results. We state the definition of a
periodic weak solution.

Definition 3.1. '(u, 8) € (L*(0, T;V) N
L20, T L°(2)) x (L*0, T; W) N L2, T;
L°(02))) is called a periodic weak solution of (HCE)
if it satisfies (10) and (11):

(10) f (u, 0) + (- V)o, w) — v(Vu, Vo)
— (agl, ¢) + (1 — a6 — 60))g, ¢)}dt =0,
11) fo 8, ¢) + (u- Vg, ) — £(VO, V)

— ((u- V)6, ¢) — (6, ) — k(VO,V)}dt = 0,
forall ¢ € D, () and ¢ € D, (D).

Remark 2. Let u €V, § € W, then u(I")
=0,60) =0 and from (i) of Lemma 2.2,
lim, _,, #(x) = 0, lim,_,, 6(x) = 0.

Then we mention a main theorem.

m >

whevre
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Theorem 3.2. Suppose assumpions (Al) ~
(A4) are satisfied. If 3c’al gl < Vv (where ¢
= (48)%), then a periodic weak solution of (HCE) ex-
1Sts.

4. Proof of results. To construct a perio-
dic weak solution, we use “the extending domain
method”. We first show a lemma by which we
have periodic weak solutions of interior problems
(P,) in domains 2, = B, N 2. We state the in-
terior problem (P,):

v, + W V)v=—(Vp) /o —aBOg
+vdv + {1 —a(@— Oy)}g inQ,
(12) dive =0 in 2,,
0,+ (V)0 =k4A0 — (v-V)6 — 6,
+ k46 in Q,,

(13) vls, =0, Ols,, =0, where 02, =TI+ 0B,,
(14) u(-, T) =u(-,0), 6, T) = 06(,0).
The definition of a periodic weak solution for the
problem (P,) is as follows:

Definition 4.1. ‘(v, ©) € (LZ,I(O, T ;H;(Q,,)))
X (L2(0, T ; Hy(2,))) is called a periodic weak
solution for (P,) if it satisfies the following:

T
15 [ (@, 0) + (@ Vg, ) = u(T0,70)
— (ag®, ¢) + (1 —alfd — 6))g, ¢)}dt =0,
(16) fo {@, ¢,) + ((v- V)¢, ©® — k(VO, V)

— (-0, ¢) — (6, ¢) — k(VO,VP)}dt =0,
foro € D, .(2,) and ¢ € D, (2,).

Here we will present an important lemma to
carry out “the extending domain method”.

Lemma 4.2. Suppose assumptions (A1)~ (A4)
are satisfied. Then there exists a satisfactory exten-
sion O which is independent of 2, such that, using
it in common to all §2,, we can construct a periodic
weak solution ' (v,, ©,) of (P,).

Proof of Lemma 4.2. Let # be arbitrarily
fixed. We use Galerkin’s method. Let {w;} C
D,(82,) (resp. {z;} © D(£,)) be a sequence of
functions, orthnormal in Lz(.Qn) and total in

H,(R,) (resp. Hy(2,)). We put
17) 0™ (@) = %a,-,m(t) w,, o™ = gﬁjym(t)zj,

then we consider an initial value problem for the
following ordinary differential equations:

18) L™ @, w) + @™, w)

= —v(Vo™,Vw) — (ag®™, w)
+ {1 —a@— 6plg, w),

19 L 0"w, 2 + (" o™, z)
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= —k(WO™,Vz) — (W™ V)G, z)
— (6, 2z) — k(VH,Vz),
where 1 < j < m. Moreover, for (@, h — ) €
H,(Q,) x L2,

(20) 2™0) = v, = ﬁ (a, w)w,,

0" = 0,,= z: (h— 6(-,0), z)z,

Multiplying (18) (resp (19)) by Ol]m(t) (resp.

B, (®), summing up with respect to j and notic-

mg ((Z) (m) V) (m) (m)) . 0 ((v(m) V)@(m) (m))

= O We have:

(21)2 i L™ @ F+ol7o™ 0 F = — (@g6™, o™
+ (1 + abg,v™) — (agh, v™),

(22) 3 olO”OF+rlve™ [ =

_ ((U(m)'V) 5, @(m)) _ (6‘” @(m)) _ K(Vé, V @(m)).

Considering the assumption (A3) and Lemma 2.2,

we have from (21)

1 d m m
23) 5 gl O F +vve™ @

< 3algls-l O™ s lo™ s + A + a®y) -
lglls-l 0™ s + 3a ]l g Iz, 1 G511 0™ Il
BCza ” g ”% K m) |2 v (m) |2
<= (FIvem P+ S Ive™ I
1+ a6y’ 12l
)% 5

= lelz1a1,

lgl,=1gleq, || 6l, =160, I-1,=
I - ”L»(g”),C = (48)"°. Then we get

K (m) |12
+ 2 1vo™ I+

m 9
+ 2 7o™ I + o’

here

(24) EE””( "o P+ Eullm‘ @) |

3cal gl
< 2 <£ m gz, Y o 2)
(v + SIve

1+ a6y’ 9a ¢
+ 1T I gl +
On the other hand, we have from (22)

@5) 3o LNe™w I+ xlve™ P

<3[lo™ - Ilve™ |-l 8l,+ 318, Hg‘
le™ s+ llval-lve™ |
27c m 27c
16 1E-Ive™ [P +

g G815

16, 1

+ 5;: Vol +3- -||V@“”’ ||2
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from which we obtain

26 o Llemm I+ Srlve™ |
2'“ 1612 7o ™I + 2” 2T a1+ S elval
Addmg (24) and (26), then we have
1d m m
CUIE A PRCY A P OY
3¢ allgll
Y 27c m
+2(1- 11) 17o™ I
llgil_
K m
+§<1 —T> “V@( )” <f@®,
1+ ab®
where f() = ¢ ||g1|2g 9a’c’ gl
_ 27c —
1615+ =5 16,1+ 5 /c||V0||Z-

Recalling the assumptlon of Theorem 3.2, we put
r=1-—3c a“glls /Vky > 0. Furthermore thanks
to (iv) of Lemma 2.1, we can take 6 such that

27¢°
SUPo<i<7 ), (16N = ; It is important for

us that 6 can be taken in common not only in m

7y

but also for all £,(n > 1). We put § = mm{ 1

%T} (0 is independent of m and #). Then we

have from (27)
(28) Bd_t (” v(m)(t) ”2 + " @(m)(t) "2)
+28(vo™ @ F+Ive™® ) <27®.

Let d, be a diameter of £,. Owing to Poincaré’s
inequality, we find

29 Lde"OF+16™0 P

+ (o™ @O P +10™ 0P <2f@),
where g, = (40) /d?. Then we have from (29)
(30) lo™ ) IF + | 0™ (T) I

<exp(— 1, D™ O IF+ 160" I

+ 2exp(— ,T) f exp(u,d) F(D dt.

Here we employ Brouwer’s fixed point theorem.
Indeed, in (17), we take initial values «;,,(0),

Bim0) (7=1,---,m)as (a;B) = (@, ",

Cpims Bims ** * s Bum). Now we define a mapping

P:R™ — R™ as follows:

31) Pla;P) = (a,,(T), -, a,,.(T),
Bl,m(T)’ T Bmm(T))’

then it is easy to verify the mapping P is con-
tinuous. For A € [0, 1], we investigate possible
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solutions of the equation (a;fB) = AP((a;B)).
In fact, we have by (30)
(32) Ia; @ IF=21Pa; ) I

— 22“ U(M)(T) “2 S_ “ U(m)(T) ”2

T
< e U™©) P+ 277 f & f () dt
0

<™ (a

;B I+ —lllflll 1 — e,

where U™ IF = | v"'“<0> >+ 160"l
and ||| fIll = supg<;<f(#). Since p, >0, we

s8I <l 71

solutions (a ; B) stay within a some definite ball.
Therefore, thank to Brouwer’s fixed point theorem,
there is (a;B) satifying (a;B) = P((a;pB)).
This implies that there exists a periodic solution
‘@™, 0™) such that ‘(v"(T), 0™ (T)) =
‘(v (M)(O) 07 (0)). We know by (32) the intial
data which gives the periodic solution is in the

bat {IU”©@ FF <21l £1I}. on the other

hand, from (28) we have

33 o™ F+10" 0 +20 [
Avo™ ) F+ve™ (s ||2)dso
<0 @ F+16™© I +2 [ fs)ds
<™ [P+ 1™ IF + 27l £]Il.

Consequently, for m-dimensional periodic solu-
tions (™ (H, @™ (9)), it holds that

31 1O F+ 1670 F+20 [
7o ™ (s) I+ 1ve™ (s) P ds
1
< z(p; + ) ANl for m = 1.

Therefore (0™ (8)},,~, (resp. {8 (D},,~,) is a
bounded sequence in L?(0, T;H;(.Qn)) (resp.
L0, T; Hy(2))) and in L3, T;L*(R))
(resp. L2(0, T ; L*(£2,))). Here a space Lo(0, T ;
L*(2,)) means {u <€ L7, T;L(Q)); u0) =
u(T)}. Hence there exist subsequences
(0™} and {®") (we used the same symbols)
such that v™ — v (resp. 0" — ®) weakly in
L*(0, T ; H}(R)) (resp. L*(0, T ; H,(2,))) and
weakly™ in L2(0, T; L*(2,)) (resp. L0, T;
Lz(Qn))). Furthermore by using Lemma 2.3
(Friedrichs) and (34) we see that ™ — v and
0" — @ strongly in L0, T ; L*(2,)). Thanks
to these facts, employing the usual argument of
Galerkin’s method, we can show that the limit

obtain Hence possible
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function (v, ©) is a periodic weak solution of

(P,) in £,, and we skip it.

Moreover, we mention a lemma to prove
Theorem 3.2.

Lemma 4.3. Let '(v,, ©,) be a weak periodic

solution for (P,) obtained in Lemma 4.2. We put
u,(x, ) =v,(x, D if x€ 2, and u,(x, ) =0
ifx€ Q2\Q,;0,(x, ) =06,(x, D ifr € Q, and
0,(x, ) =0 ifx € Q\Q,. Thenu, € L0, T ;
V) N L2, T; L°(R)) and 6, € L*(0, T ; W) N
L300, T;L°(9). Moreover {u,},~, (resp. {6,},= 1)
is  bounded in L0, T;V) (resp. L*(0,
T; W) and in L0, T ; L°(2)) (resp. L2(0, T ;
L°(Q))).

Proof of Lemma 4.3. We return to (28) and
integrate it on [0, T'], then by virtue of the
periodicity of »” (£) and @™ (#) with period T
we get

T )
35 3 AV @I +1ve™ o Pat

gfo rwar< T £,

where 6 and T||| ||| are independent of # and
m. If we take m— o in (35), then we obtain by
the lower semicontinuity of the norm with re-
spect to the weak convergence

T 2 2
(36) 5f0 Vo, ® I+ 1ve,mn [P adt

T
sfo fwat< Tl =1,

On the other hand, the equality v,(T) = v,(0) in
L*(R,) implies v,(T) = v,(0) for ae. T E 2,
and because of Lemma 2.2 we see v,(f) €
L°(R,), therefore we find v,(T) = v,(0) as ele-
ments of L°(R,). By this fact and (36) it holds
that v, € L0, T ; L°(£2,)). Similarly we sce O,
e LZ,T(O, T, LG(Qn)). Considering these results
and using (36) again, it holds that for all » = 1,
u, € L0, T;V) N L0, T;L(RQ), 6,< L0,
T; W) N L0, T;L(2) and (note ¢ = (48)"°)
61 2L U0 B + 16,0 Eegar

Cc
T
= J; (172, @& I + 76,0 Pt < T_”%Jfﬂ_

Proof of Theorem 3.2. According to the uni-
form estimate (37), we can select subsequences
#,y, 0, and u€ L0, T;V) N L0, T; LYQ),
6 L0, T;W)N L2, T;L°(2) such that
u,, — u (resp. 0, — 0) weakly in L*(0, T;V)
(resp. L*(0, T ; W)) together with in LZ,,(O, T ;
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L(2)) (resp. Li(O, T;L°(2))). Now we claim
that there exist subsequences #, and 6, such
that for any bounded 2 C Q

(38) u, — wu strongly in L0, T ; L*(2)),

(39) 6, — 6 strongly in L*(0, T ; L*(2")).

We put K; = £, then {K;}]_, form a sequence of
compact sets such that K, € K, € - - - — Q(j—
o). Here, for each K, we take a;(x) €
C, (2) with the property 0 < a; <1, a; |K’_ =1,
and supp a; < £;,,. We note K; < supp «;. Here
and after in this proof, | - IIQI =] - ”Lz(Q!), d; =
the diameter of £, Then we construct a desired
{u,} as follows. First we make a sequence
{a,(®u,(x)},_,, then this forms a uniformly
bounded sequence of L*(0, T ; W, *(£2,)). Indeed,
noting #,(I") = 0 and using Poincaré's inequality
on £, then we see |ayu, IIQZ < u, IIQZ < %
IVu, |, Hence we have by (37)

' dy (7 d Tll£l
(40)](: ||a1u"l|i”dt£—2%’£ 172, e < %2 TUAL

Moreover, |V (au,) ||Q2 < (Va)u, ng + (V) ngz
d
< (FIral +lal) I7u,ls, where lwl.
= €85.8UP,eq, | w(2) |. Therefore we have

T o d2 2

an 17 @) b,dt < (G 1val. +lal.) -
Tl A1

I

By these estimates we find {eu,}, is uniformly

bounded in L*(0, T ; W,*(2,)). Consequently,
there is a subsequence {ayu,,},_, which

converges weakly in L*(0, T ; Ly*(2,)) and espe-
cially in  L*0, T; WZ(.QZ)).

according to Lemma 2.3, we get

T L. T
(42) J; | ooy, — ayuy, ”?;2 dt < kZ f; (ayuy,
=1

Furthermore,

T
2 2
— oy, W)y, dt + a_/; leu,, — ayuy, 5120, dt
y
< € T 2
< X ) (ayuy, — ayuy, wy)g, dt
k=1

w e, TUAN_ e TSI

5 ’
d, d
as p, ¢ — ©, where Co, = 5" + (”Val ||m.7_22_ +

2
ol w) . As ¢ is arbitrary in (42), the sequence
{ayu,Y5_, converges  strongly in  L*(0, T;
L*(2,)). This implies that {u,,};_, converges
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strongly in L*(0, T ; L*(K,)). We repeat such an
argument and we make {u;,},_,(G=1,2, - ).
Choose diagonal components and denote them by
{u,}, _,. then it converges on all K, in Lz((), T;
L*(K))) sense. As for {0,),_,, we can show
similarly.

Making use of (38) and (39), we can prove
that "(u, 0) is a periodic weak solution of (HCE).
In fact, if we take an arbitrary test function t((p,
¢), then we find a bounded domain £’ and a
number 7, such that supp ¢, supp ¢ < £’ and
Q< Q, < Q, for all n = n, Then, with the aid
of Lemma 2.2 and (37), we have

(43) f; | (C V)0, u) g — (- V), ), | dt

T
< j(: 31 Uy — U ”L2(9'> [ Uy “LB(.Q) (1% () ”L3(9'>
+ 3 u ”LG(.Q) [ Uy — U ||L2(Q') 1% (2 "L3(Q’)}dt

1

< 6c- (LAY g, -

T 1
<f ” Uy — U ||i2(9'>dt>2_’ 0, aswn — oo,
0

where || w ;.. = supy<, <7 Il w® |54, Similarly

T
@) [ 109, 6,00 = (@ 1)g, 0, di

T
S Y ] e ot e | )
+ 30160l 0 — w20 1V @ lls0r)) @t

< g (ZULAILY: (¢ L 08, = 0L ga)
1
+ <f;T ot — u Hiug»)dt)z} 17 &5,

and the right hand side of (44) tends to O as
n' — oo . We skip the remaining terms.Thus we
have shown that ‘(u, 6) is a periodic weak solu-
tion of (HCE).

0t
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