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Periodic Solutions of the Heat Convection Equations in Exterior Domains
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Faculty of Science, Japan Women’s University

(Communicated by Kiyosi IT0, M. j. A., April 14, 1997)

1. Introduction. Let ,.Q- K 1 where
K is a compact set whose boundary K is of
class C. We put
and 2- f) (0, co). Then we consider the
periodic problem for the heat convection equation
(HCE):

u + (u’V)u Vp) /p + {1 a(O--
Oo) } g + vAu in

(1)
div u 0 in

0 -- (U" [7) 0 If,A 0 in

(2) u(x, t)[e O, O(x, t)[e Z (x, t) (> 0),
lim u(x) 0, lira O(x) O, for t> 0,

(3) u(’, T) u(., 0), 0(’, T) 0(’, 0).
Here u u(x) is the velocity vector, p p(x) is
the pressure and 0 0(x) is the temperature; v,
:, o, p and g g(x)are the kinematic viscos-
ity, the thermal conductivity, the coefficient of
volume expansion, the density at 0 O and the
gravitational vector, respectively. As for the ex-
terior problem of (HCE), Hishida [2] showed the
global existence of the strong solution for the ini-
tial value problem (IVP) in the case that K is a

ball. Recently, eda-Matsuda [7] showed the ex-
istence and uniqueness of weak solutions of (IVP)
when K is a compact set with the boundary of
class C. Moreover, eda [10] obtained the sta-
tionary weak solutions for the similar exterior
domain to that of [7]. In [7] and [10], we used "the
extending domain method" to get weak solutions.
Namely, it is expected that the exterior domain
can be approximated by interior domains Qn
B, f (Bn is a ball with radius n and center at
O) as n -- c (see Ladyzhenskaya [3]). The pur-
pose of the present paper is to show the exist-
ence of periodic weak solutions of (HCE) by using
"the extending domain method".

2. Preliminaries. We make several assump-
tions: (A1)coo int K (coo being a neighbourhood
of the origine O) and K B B(O, d)" where
B is a ball with radius d and center at O. (A2)
/2 F OK C. (A3)g(x) is a bounded and
continuous vector function in RaN o)o. Moreover

there exist Ro > 0, CRo > 0 such that gl

Czeo/I x -} +s
for zl -> Ro (s > 0 is arbitrary).

(A4) Z C2(F x [0, oo)) and is periodic with
respect to t with period T.

Remark 1. Thanks to (A3), we see g
6

L (X2) for p >-- -.
We prepare a lemma which gives us an auxiliary

function (see [1] p. 131 and [11] p.175):
Lemma 2.1. There is a function O(x, t)

which possesses the following properties (i) (iv):
(i) - Z on [’. (ii) O(x, t) Cg(Rax) for any fix-
ed t and O, O are continuous for t [0, T]. (iii)
0 is periodic in t with period T. (iv) For any
s 0 and p 1, we can retake O, if necessary,
such that SUpIO, TI]I (t)I1 S.

Now we make a change of variable" 0 0 +
0, and after changing of variable, we use the
same letter 0. Equations (1), (2), and (3) are
transformed to the following:

u + (u’g)u- (Vp)/p- aOg + vAu
+ {1 a(0-- Oo)}g in ,

(4) div u 0 in ,
0 + (u.V) O= AO-- (u’V)O-- O,

+ A0 in ,
(5) u[?= 0, 0[?= 0, lim u(x) O,

lim O(x) O,

(6) u(., T) u(., 0), 0(., T) 0(., 0).
We put G Q or n, ’ G x [0, T] and

G U F’= (G tO F) x [0, T]. Then we write

W’’(G) (u;D"uff(G),[a[<_k}, Wo’’(G)
the completion of C2(G) in W’(G),

Do(G) ( C(G)’div 0}, D(G)

C(G F). (F) 0},
H(G) (resp. H2(G)) the completion of D,,(G)
in L (G) (resp. W ’z (G)),
Ho (Qn) the completion of D([2n) in W’ (.On)
(it turns out Ho (2) W’2 (,Q,,)),
V(resp. W) the completion of De(Q) (resp.
D()) in [[" [[N<), where u [IN()--[[ 7U [IL2(D),
/)o(() ((p Co ((’); div q 0}, /(() (
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/)o,(() {f C((); (p(x, T) (x, 0)}, D(O)
( b(); (x, T) (x, 0)},

L(0, T g(n))
u(x, T) u(x, 0) a.e. x
L(0, T ;H(.)) tO L(0, T ;H());
O(x, T) O(x, 0) a.e. x n}
L(0, T L())- {f L2(0, T ;L());
f(x, T) -f(x, 0) a.e. x }.

We stae some inequalities. (see Chap. of

[31).
Lemma 2.2. Assume the space dimension is

3. G is permitted unbounded. Then

(i) For u W’2 G or V or we have
(7) u [(v) g c Vu []z(v), where c (48)1/6.

(ii) (Hblder’s inequality) If each integral
makes sense, then we have

(8)

1 1 1
where p q, r> 0 and + +-- 1.q r

We state another lemma (see [31):
Lemma 2.3. (Friedrichs). Suppose G is a

bounded domain in Rn
and its boundary G is of

class C. Let us tae an orthonormal basis

(w}=i of L(G). Then for any s > O, there exists

a number N such that

k=l

Ar all u W)’(G),
2n

where m > (n > 2) m > l(n-- 1) andn+2
N is independent of u.

3. Results. We state the definition of a

periodic weak solution.
Definition 3.1. (u, 0)

LL.(0, T; (9))) x (L(o,T;W) L.(0, T;
L() is called a periodic weak solution of (HCE)
if it satisfies 1 O) and 1 1 ):

(10) {(u,

(gO, ) + ((1- (0- Oo))g, ))dt O,

(1) ((o, ) + ((u. ), o) -(o,)

((u. g)O, ) (0,, ) (gO, g))dt O,
)r all p Da, () and D, ().

Remark 2. Let u V, 0 W, then u(F)
O, O(F)-0 and from (i) of Lemma 2.2,

limx_ u(x) O, lim,x,_ O(x) O.
Then we mention a main theorem.

Theorem 3.2. Suppose assumpions (A1)
(A4) are satisfied. If 3ccr g IIL(9) < V (where c

(48)), then a periodic weak solution of (HCE) ex-

ists.

4. Proof of results. To construct a perio-
dic weak solution, we use "the extending domain

method". We first show a lemma by which we

have periodic weak solutions of interior problems

(Pn) in domains X)
n B, C1 9. We state the in-

terior problem (P)"
Ut l (U" 7) U (7p) /p

+ Av + (1 o(0-- O0)}g in ,On
(12) div v 0 in D.,

(13) v[,--0, 0]--0, where

(14) u(’, T) u(’, 0), 0(’, T) 0(’, 0).
The definition of a periodic weak solution for the
problem (Pn) is as follows:

Definition 4.1. (v, O) (L (0, r HJ (,.n))
(L(O, T;H([2n))) is called a periodic weak

solution for (Pn) if it satisfies the following"

(15) ((v, Qgt) + ((v" 7)q9, v) l)(l7v, [7Q9)

(agO, q) + ((1 a(0- Oo))g, q)}dt- O,

(16) ((0, Ct) + ((v-I7), O) :(I70, 17qb)

((v" I7), ) (Or, ) :(I7, IT)}dt--O,
for qo o. (f2,) and d2 D (f-2,).

Here we will present an important lemma to

carry out "the extending domain method"
Lemma 4.2. Suppose assumptions (A1)(A4)

are satisfied. Then there exists a satisfactory exten-
sion 0 which is independent of 2n such that, using

it in common to all 2, we can construct a periodic

weak solution t(Vn, On) of (Pn)"
Proof of Lemma 4.2. Let n be arbitrarily

fixed. We use Galerkin’s method. Let {w}
Do() (resp. {z} D(2n)) be a sequence of

Lfunctions, orthnormal in (,Q) and total in

Hl(x).) (resp. H01 (,)). We put
m

(17) v(’)(t) cr,,(t)w, O(’)(t) ,m(t)z,
j=l j=l

then we consider an initial value problem for the
following ordinary differential equations:

d (v(m) (m) (m)
(18) -i (t), wj) + ((v .IT)v wj)

19(71) (m), Vwj) (ago (m), Wj)
+ ({1 a(O- Oo)}g,

d (m) (m) (m)
(19) -d (0 (t),z) + ((v .I7) 0 z)
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(m)(I70, Vz) ((v V) O, z)
(0, z) c(70, ITz),

where 1 --<j <-- m. Moreover, for (a, h-- )
H(D,) x L (n)

(20) P (0) UmO (a, Wj) Wj,
j=l

o(m (0) Omo (h 0(’, 0), z) z.
j=l

Multiplying (18) (resp. (19)) by ,m(t)(resp.
,m(t)), summing up with respect to j and notic-

(m) (m)) (m) (m) (m)
ing ((v (m V) v v O, ( (v V) O ,0

0, we have"
1 d v(m) v(m) (m> (m>)(21) (t) [12 + V V (t) [[2 (ago v

(m)) (m)+ ((l+aOo)g,v (agO, v ),
1 d (m>

(22) 2 dt o <t) + o <t>
((v(m’g) O, 0(m) (Ot, 0 (m) (g O, g o(m).

Considering the assumption (A3) and Lemma 2.2,
we have from (21)

1 d (m) (m)
(3> llv <t>ll+llv <t>ll

(m)3Ilgll.ll o (m II’[I v II + (1 +
(m)

g II-II v I[ + 3 g 11’ I[ v <m> II

ll<>ll+llv 12
/

v (m) (1 + 0o)

(m 9CZ
+[v + Ilgll’1011,

here

l[’l[#,(gn),c- (48) 1/6
Then we get

1 d (m) 1 (m)
(24) a7 (t) I1" / -, Vv (t)

(1 + aOo) C 9C+
On the other hand, we have from (22)

1 d (m) (m)
(25) --d7 O (t) + vo

(m) (m)-- a V 116" V O ll" 0 11:3 + 3 0t 6.

g 27cZ
2X 0113 Vv [l + 2x
3 (m)

/ v0 / 3 "g vo ,

from which we obtain
1 d (m) 1 (m)

(26) 2 dt[[O (t) +-:11170
<_ 27c m, 27cZ 0t IIL / 3
2 1111311v + 2 1111.

Adding (24) and (26), then we have
1 d (m) 1 d (,

(27) 2 dt v (t) I1" / - o (t)

u
/
/ 3c2a g II 27c 10 )+ 1 v v

(1 + aOo) 9a cc
g I1 + g I1where f(0

I111+ 2c2 10 I1 + g .
Recalling the assumption of Theorem 3.2, we put

7 1 3cZa g II_/(Z > o. Furthermore_ thanks
to (iv) of Lemma 2.1, we can take 0 such that

27c O(t)II < - It is important forsup--t-- T K’

us that 0 can be taken in common not only in m

but also for all X)(n > 1). We put 6- min{-7,
-} (6 is independent of m and n). Then we

have from (27)
d (m) (m)

(28) dt (llv (t) +lIo (t) z)

+ 26 ([I vv(m) (t) + [7 0
(m) (t) [[) <_ 2f(t).

Let d. be a diameter of .. Owing to Poincar6’s
inequality, we find

d v(m) (m)
(29) dt (ll t) + O t) )

(m) (m)+ n <11 v (t) + O (t) ) <_ 2f(t),
where g (46)/d. Then we have from (29)
(30) v(m’(T) / O (’ (Z)

(m) (m)< exp(--/2nT) (lI v (o) + o (o) ’)

+ 2exp(-- z,T) exp(p.t) f(t) dr.

Here we employ Brouwer’s fixed point theorem.
Indeed, in (17), we take initial values aj,m(O),
flj,m(0) (j= 1,’’-, m) as (a;fl) (Celm,’’’,
Cemm, film,’’’, flmm)" Now we define a mapping
P :Rz’---’ RTM

as follows:
(31) P((cr ;fl)) (crl,m(T),’", olin,re(T)

il,m T) flm,m T)
then it is easy to verify the mapping P is con-

tinuous. For /2 [0, 1], we investigate possible
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solutions of the equation (a ;fl)- 2P((o ;fi)).
In fact, we have by (30)
32)

/2

TroT< e -anT u(m)(o)II / 2e "" e""tf(t)dt
2 n),<- e-T ( ;) I12 / Ill f Ill (1 e-

where U
and Ill f[[[- SUPo<t<vf(t). Since fn>0, we

2
obti <;)II -< n Ill fill, He possible

solutions (o;fi)stay within a some definite ball.
Therefore, thank to Brouwer’s fixed point theorem,
there is (or ;/3) satifying (a;/3) P((a ;/3)).
This implies that there exists a periodic solution
(u(m) ( (m)) (m) (m)

such that (v (T),O (T))
t(v(m)(o), o(m)(o)). We know by (32) the intial
data which gives the periodic solution is in the

ball g((0)I1" <7. III7111. O the other

hand, from (28) we have
(m) (m) f0/ lip t

(m) (m)<ll v v

<llv (o) +llo (o) 11"+2
(m) (m)<-I1 (o>11+11o o) +2Till fill.

Consequently, for m-dimensional periodic solu-
(m) (m)

tions t(v (t), 0 (t)), it holds that
(m) (m) (t

.o
(m) (m)(ll V v (s)II / r’o (s) llbas
(1

Therefore {u(m)(t)}m>_l (resp. {o(m)(t)}m>_l)is a

bounded sequence in Lz(0, T ;H(L)n)) (resp.
L2(0, T;H(L)n))) and in L(0, T;La(,Qn))
(resp. L(0, T;L(n))). Here a space L(0, T;
Lz (-Qn)) means {u L (0, T L (Qn)) u(0)
u(T) }. Hence there exist subsequences
{v m)} and {0 Cmy} (we used the same symbols)

(m)
--+ O) weakly insuch that v -- v (resp.

L (0, T H (X2n)) (resp. L (0, T H (X2n))) and
weakly in L(0, T;L2(x2n)) (resp. L(0, T;
L(Qn))). Furthermore by using Lemma 2.3

(m)
(Friedrichs) and (34) we see that v --+ v and
o(m) O strongly in L2(0, T L (X)n)). Thanks
to these facts, employing the usual argument of
Galerkin’s method, we can show that the limit

function t(u, {)is a periodic weak solution of
(P) in ff)n, and we skip it.

Moreover, we mention a lemma to prove
Theorem 3.2.

Lemma 4.3. Let t(vn, 0n) be a weak periodic
solution for (Pn) obtained in Lemma 4.2. We put

u, (x, t) v (x t) if x 2 and u (x t) 0

if x 2 \ n; On(x, t) On(x, t) if x 2n and

On(x, t) 0 if x \ n. Then un /.,2 (0, T
V) f LZ (0, T L (Y2) and O L (0, r W)

L(0, T ;L6(f2)). Moreover {un}_> (resp. {0n}n_>
is bounded in Lz(O, T;V) (resp. L2(0,

LT;W)) and in L(0, T; (X2)) (resp. L(0, T;
L6(9))).

Proof of Lemma 4.3. We return to (28) and
integrate it on [0, T], then by virtue of the
periodicity of vm>(t)and om)(t)with period T
we get

(35) 6 (ll7v(m’(t) II* / IIv o (m) (t)1[2) dt

< f(t)dt < Till 7111,

where 6 and Till 71[I independent of n and
m. If we take m--, oo in (35), then we obtain by
the lower semicontinuity of the norm with re-

spect to the weak convergence

<_ f (t)dt < Till fill (n > 1).

On the other hand, the equality vn(T) vn(O) in

L(f2n) implies vn(T) vn(O) for a.e. x
and because of Lemma 2.2 we see vn(t)
L6(On), therefore we find vn(T) vn(0) as ele-
ments of L6(Dn). By this fact and (36) it holds

Lthat vn L,(O, T; (X2n)). Similarly we see

L(0, T L6(X2n)). Considering these results
and using (3(3) again, it holds that for all n > 1,

Lun L2(0, T V) r3 L(0, T (2)), O L2(0,
;L6T; W) Yl L(0, T (2)) and (note c- (48)

< (11 t7u,, (t) I1" + v o,, (t) ) dt < T II1

Proof of Theorem 3.2. According to the uni-

form estimate (37), we can select subsequences
Lun,, 0n, and u Lz(O, T V) f3 L(O, T" (2)),

L60 Lz(0, T;W) VI L(0, T; (X2)) such that

Un,---* u (resp. 0n,---’ 0) weakly in LZ(0, T;V)
L(resp. (0, T W)) together with in L(0, T
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LL6(,Q)) (resp. L(O, T; (,Q))). Now we claim

that there exist subsequences un, and 0n, such
that for any bounded $2’

(38) u,--* u strongly in L(O, T;L2(.Q’)),
(39) 0, 0strongly in LZ(O, T;L(’)).
We put K , then {K}= form a sequence of
compact sets such that K K ’’’ (j
). Here, for each

C(D) with the property 0 N % N 1, % [ 1,
and supp +. We note K supp %. Here
and after in this proof, [[" I,- I" II<;, d-
the diameter of . Then we construct a desired

{Un,} as follows. First we make a sequence
{()u(w)}=, then this forms a uniformly
bounded sequence of L(0, T; W2’z(Dz)). Indeed,
noting un(F) 0 and using Poincar’s inequality

d
on 2, then we see ]lUfl[D2
I1 I1, Hnce we have by

T

<40) Ilau,l[,dt < d r gun [[ dt < d Tl[lflll

oreovr, V (l"n l
dz( I + I111) IUn I1, whe w II
ess.sup Iw(z)I. Therefore we have

(41) (lUn) I1 dt I1 + I1
Tlll7111

6
By these estimates we find {Un} n is uniformly
bounded in Lz(0, T W2’z(z)). Consequently,
there is a subsequence {u}=t which

L 1,2
converges weakly in (0, T;Lo ()) and espe-
cially in L (0, T W (2)). Furthermore,
according to Lemma 2.3, we get

T t T

lglq Wk et + s

< 1 (IUlp--lUIq’Wk)

llflll viii fill+ 4eC 6 4eC 6

as p, q where Cl d2 + (1[ VI [[ .+dz
[[1[= As s is arbitrary in (42), the sequence

{u}= converges strongly in Lz(0, T
L2(D2)). This implies that {u}= converges

strongly in L(0, T L(K1)). We repeat such an

argument and we make {ujp}p=l(j 1,2, ").
Choose diagonal components and denote them by

L{un,}n,= 1, then it converges on all Kj in (0, T;
LZ(Kj)) sense. As for {0n,}n%=l, we can show
similarly.

Making use of (:38) and (39), we can prove
that t(u, O) is a periodic weak solution of (HCE).
In fact, if we take an arbitrary test function t(q,
), then we find a bounded domain D’ and a

number n0 such that supp p, supp @ ’ and

’ n n for all n 2 no. Then, with the aid
of Lemma 2.2 and (37), we have

(43) ((u,.V), u,)o- ((u.V), u)nldt

where w [a, SUPot r w(t) ][a(o,>. Similarly

(44) ((Un,’V) , On,) ((U’V), O)ldt

(2

and the right hand side of (44) tends to 0 as

n’ We skip the remaining terms.Thus we

have shown that t(u, O) is a periodic weak solu-
tion of (HCE).
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