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Abstract: Let Er be the elliptical domain

where r > 1. Let S(E,) denote the class of functions F(z) which are analytic and univalent

in E,. with F(0) 0 and F’(0) 1. In this paper, we obtain sharp bounds for the Faber
coefficients of functions F(z) in certain related classes and subclasses of S(E,). The case
r--, eo gives standard coefficient estimates for the corresponding classes of functions de-
fined on the unit disc.

1. Introduction. Let S denote the class of extremal functions. However, it is interesting that
functions f(z) which are analytic and univalent for each r > 1 there are two extremal functions
in the unit discD= {z:lzl< 1} with the in E corresponding to the number of invariant
Taylor expansion rotations of E

n 2. Preliminaries. Let Y2 be a bounded sim-
(1) f(z) z q- anZ

n=a ply connected domain in C containing the origin.

Coefficient problems for functions in the class S Let g(z) be the unique, one-to-one and analytic
and certain subclasses and related classes of S mapping of A {z:[ z > 1} onto C\ with

Cnhave been attacked by several authors (see e.g.,
(2) g(z)- cz + , (c > 0, z A).

[1], [21, [5], [6], [10], and [121). However, very lit- n=0 Z
tie attention has been paid to the corresponding Assume that Y2 has capacity 1 so that c-- 1 in

problems for functions analytic in domains (2). The Faber polynomials, {On(Z)}n=o, associ-

other than D. For functions analytic in Y2, it is ated with Y2 (or g(z)) are defined by the generat-

natural to use the Faber expansion as a gener- ing function relation [6, p.llS]
alization of the Taylor expansion.

In [71, we found sharp bounds for the Faber
coefficients of certain classes of analytic func-
tions in the elliptical domain

(5/4)
+ < 1

(3/4)2
In this paper, we generalize the results of [7] to
the elliptical domain

( 1)2+() <1

I+- 1 -12r2

g’()
(z)-.(a) g() z .=0

If 2 is analytic and F(z) is analytic in

IntO, then F(z) can be expanded into a series of
the form

(4) F(z) E An(z), z IntY2
=0

where
1

F(g(z))z dzA,, 2rci I=o
with p < 1 and close to 1. In addition, the series

where r > 1, in which the case r- 2 gives the in (4), called the Faber series, converges uniformly
results of [7]. Here it is important that the case on compact subsets of InLO (see e.g., [13, p.421).
r---+ oo yields the classical coefficient estimates The function
for the corresponding classes of functions in D. g(z) --z q- 1

7-, r> 1
As known for r--, oo, there are infinitely many r z

is the one-to-one, analytic mapping of A ontoSubject Classification AMS, No. 30C45, 33C45.
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C\ E One obtains from (3) that the Faber typically real functions T defined for D (see e.g.,

polynomials, {3n(Z)}n=o, associated with Er are [6, Chap. 2]), respectively. Because of representa-
given by tion, denote the Faber coefficients {An}n=o of

2nr-npn[rZ\2] (n- 0,12"-).
Y(z) in the classes defined above by {An(f)}n=o,
where f(z) is the corresponding function in D,

Here {Pn(z)}no are the monic Chebyshev polyno- given by (5).
mials of degree n, which are given by 3. Main Results. Let F(z) be analytic in

en(z) 2-n{[z + //Z2- 1] n -1- [z- V/Z2- 1]n}, E and have the Faber coefficients {An}n=o Then

(n- 1,2,3," ") from the orthogonality of the Chebyshev polyno-

and
mials we see at once that {An}n=o are given by

Po(z) 1.
the formula

//’n f0Let sn(z q) be the Jacobi elliptic sine func- An =- F cos nO dO, (n- 0,1,2,...).
tion with nome q, and modulus k0, and let

dt
K

V/1- t V/1- kot
(see [9, Chap. 2]). Then the function

( 2K _i rz
q) (z) V:o sn zr sin 2 .4

is the one-to-one, analytic mapping of Er onto

As a result, if F(z) is in the one of the classes

S(E), C(Er), P(E) and T(E), then the Faber
coefficients, {An(f) }n=o, of F(z) are given by

r 0//(6) An(f)- Ko fo "f (P r cos nO dO,

(n-- 0,1,2,...).
Let denote one of the sets C, P, and T.

D with ((0) --0 and q)’(0) rv/k K
(see [11, Then : is a compact set. Hence the closed con-

vex hull of :K, g-6:, is also compact and since
p.296]). An(f) is a continuous linear functional

Let S(Er) denote the class of functions M-- max ]An(f)F(z) which are analytic and univalent in E and
satisfying the conditions F(0) 0 and F’(0) exists. In addition, we have
1. Also, let the class C(Er) be defined as

C(Er) {F(z) S(E) F(E) is convex}.
In addition, let T(Er)denote the class of func-
tions F(z)analytic in Er, satisfying the condi-
tions F(0)= 0 and F’(0)= 1 and having real

(7) max IAn(f) max An(f) I,
fo ext (K-(o-))

where ext(-6()) is the set of extreme points of
co (:).

The extreme points of -6(C) and( are

values for 1

values elsewhere. Finally, let P(Er) denote the
class of functions P(z) analytic in E with

1 r/ko KP(0) q0’ (0) rr and Re{P(z) } > O.

1
(The condition F(0)- q)’(0) is imposed for

1 1 determined in [4] as follows"
< z< 1+-- and nonreal (8) ext(K6(C)) {f’f(z) Co(Z),O< 0<27r}

and
(9) ext(C-d(T)) {f f(z) to(Z), 0 < 0 <
where Co(Z) and to(z) are given by

(10) CoZ o1--ez
z

(11) to (z)
convenience.) 1 2z cos 0 + z

If f(z) S, then the function F(z) defined respectively. The extreme points of K6(P) [3] are

by given by

(5) F(z)
f(q(z)) (12) ext(Kd(P)) {f "f(z) --po(z), 0 < 0 < 27r}

q’(O) where
i0

is in S(Er) and conversly every function F(z) (13) Po(Z)
1 + e z

iOS(E) has such a representation. In a similar 1--e z
way, if F(z) is in one of the classes C(Er), Using (7) with (8), (9), and (12) we see that
P(E) or T(Er) then F(z) may be written as in the problem of maximizing lAn(f)] over the clas-

(5) for some f(z) in the classes of convex func- ses C, P, and T reduces to the problem of max-

tions C, functions with positive real part P or imizing the values of IA.(co) l(O [0, 2r)),
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A.(Po)[(o 0,2r)), and[A,(to)[(O [0, r])
over 0, respectively.

The method of [7] is used to evaluate the
values of A. (co), A. (to), and An (Po), where An (f)
is given by (6). Since manipulations are the same
as in [7], we give only the evaluation of An(C

for 0 <_ 0 <_ - and state the other results

without proof.
Theorem 1. /f Co (z) is given by (10), then

An(co)
-iO in(O) -2n -in(O)

7re (g --" e

4n) 1/22rKvo (1 r- (1 + ko 2ko cos 20)

0 < 0 <- -, (n 0,1,2," ")

where 0 <-- or(O) <_ - is given by

cos cr(O) + e

0<_ O <_-with v--
4iIn r

2 COS Z
Proof The function r maps the

rectangle R with vertices at the points

7rT 7ET 7ET
zr 4 r + --, and --onto E Therefore the

(2 cos z)function qo r maps R onto D with

(14) cos ((t) + e 0 tG 2

where (t) increases from 0 to as tincreases

from 0 to 2"

Integrate the function h(z) Co r
z

e over the parallelogram ABCD with vertices
at the points --K, K, v, and v- 2, respec-

tively. From (14) we see that a(0)+ is a

pole of h(z) inside ABCD.
Let

iK’- Kv

and refer to sn z; as sn z for convenience.

Then

+ z))
+

since sn z is doubly periodic with periods 2iK’
and 4K. Thus

(15) o r r

(2 cos (roy z))q) r
37rv

It follows from (15) that --c(0)+ 4 is the

other pole of h(z)inside ABCD. So by the re-
sidue theorem,

(16) BcDh(z)dz- 2i(Res(o+ + Res_(o+)
where ReSo denotes the residue of the function
h(z) at the point z Zo.

The contribution of the integrals on BC and
DA cancel each other because h(z) is a periodic
function with period 2. Now

(17) h (z) dz h (x) dx
B

2 Co cosnxdx

and

h(z)dz- h(x + rcv- 2rc)dx
D

h(x + zrv)dx.

From (15) we obtain

(18) Lh(z)dz--- foein(x+)Co(p(2 csx))dxr
2.r Co qo r cos nxdx.

Then adding (17) and (18) results in

(19) BCD h (z) dz

r-4- fo Co cos nx dx.

To evaluate Res(0)+, expand the function

Co(]ko sn(u + Uo)) about u- 0, where

(20) Uo a(0)

The addition formula for sn u [9, p.33] yields
(21) o sn(u + o)

oSnucnuodnuo+snuocnudnu
1- ko sn uo sn u

where cnz and dnz refer to cn z; and

dn z respectively. It follows from (14) that

-i0-oSnUo e 0 < 0<
zr
2
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To evaluate cn uo and dn uo employ the identities
2
Z(22) sn +cn z= 1

and
(2:3) kosn + dn 1 or
[9, p.25]. To determine whether to use + or
sign for cn uo and cnuo check the signs of

Re{cn (x iK" e(dn (x
iK’

respectively Deduce from the addition formulas
for cn u and dn u [9, p.34] that

iK’) =/l+k cnx+isnxdnx22 ko 1 + ko sn x
ca (x

and

dn (x iK’) (1 + ko (dn x + iko sn x cn x)
2 1 + ko sn 2x

Thus Re[cn(x iK’ [dn(x2 )1-->0 and Re

iK’)}2 ->0 for x [0, K] since cnx decreases

from 1 to 0 and dnx decreases from 1 to

v/1- ko for x [0, K]. Hence using (22) and
(23) we obtain

-2
cn Uo --/1 eko

and
dn uo v/1-- koe-2w.

Choosing the principal branch as zc < argz
<_ zc we obtain

0 <-- arg(cn Uo) <-- -and

0 <_ arg(dn uo) <_ -.
Therefore

0 <-- arg(cn Uo dn Uo) <- 37

which implies

(24) /-o cn Uo dn Uo ie-(1 + k 2ko cos 20) 1/2.
Using

1
(25) snu= u--(1 +k)u+

1 2
(26) cnu-- 1---. u +

(27)
1

dnu= 1----kou +
z!

[9, p.37], and (24) in (21) and doing necessary
calculations result in
(28) o sn(u + uo)

-i0 i0 1/2
ue +ie- (1+ ko--2kocos20) + "".

Thus

co((--o sn(u + Uo))
(1 +k--2kocoS20)

co(< sn (_2K_ (_ z)))

2K(1 + ko- 2ko cos 20 z- a(0)

Hence we obtain
-i0 -n ina(O)

7r,e r e
(29) Res(o)+_ 2K(1 + k 2ko cos 20) 1/2"

In a similar way, residue of h() at the point

c(0) + 4 may be obtained as
-iO -3n -inot(O)

yEse r e
(30) Res_(o) a,- 2K(1 + ko 2ko cos 20)
Substituting (29) and (:30) into (16) yields

(31) ACD h (z) dz
-iO -nzc e r (eina(o) r-2n -imr(O)).

K(1 + k 2ko cos 20)
Comparing (19) and (31) gives the desired result.

Thel-em . If Co(Z) is given by (10), then

1)"zr2e-i(e-i""(-) r-2nein"(-)
A.(co)

2rKo(1 r-") (1 + k- 2ko cos 20) v’

<- 0 <- , (n 0,1,2,’"),2
where c(O) is as in Theorem 1.

Theorem 3. If co(z) is given by (10), then

(- 1) nTc2e-i (e"(-) r-z"e-ina(-z))
A.(co)

2rKvo (1 r -4") (1 + k 2ko cos 20)

;r <_ 0 -< -, (n 0,1,2,’"),

where o(0) is as in Theorem 1.
Theorem 4. If co(z) is given by (10), then

-iO -ina(2-O) -2n ina(2r-O))
A.(co)

zc e (e r e

2rKavC (1 r -4") (1 + k 2ko cos 20) 1/’

3 _< 0 <_ 2zr, (n 0,1,2,...),2
where or(O) is as in Theorem 1.

Theorem 5. IfPe(z) is given by (13), then

An(Pc) 2A(ce), 0-< < 2, (n 0,1,2,’").
Theorem 6. If to(z) is given by (11), and

k(z) is the Koebe function given by
z

k(z) to(Z)
(1 z) 2’
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then

An(k)
4rK3v/-o (1 ko) (1 r-2n)
(n= 1,2,...).

Theorem 7. If to (z) is given by (1 1), then

( 1) n--
A.(t)

4rKv/ko (1 ko)2(1 r-2")

Theorem 8.
A(t)

(n 1,2,...).
If to (z) is given by (1 1), then

r sin na (0)
-2n) 1/22rK2vo(1 r sin 0(1 + ko 2ko cos 20)

0 < 0<_;, (n= 1,2,...)

where c(0) is as in Theorem 1.
Theorem 9. If t (z) is given by (1 1), then

A. (to)
1)"-r sin n[a(r 0)]

2rK2vo (1 r-2n)sin 0(1 + k 2ko cos 20)1/2,

-<_ 0 < r, (n 1,2," ")

where o(0) is as in Theorem 1.
In the following three theorems we obtain

sharp bounds for the Faber coefficients of func-
tions in the classes C(Er),P(Er) and T(Er).
Here we give only the statements of the results
since proofs are similar to the proofs given in [7].

Theorem 10. If f C and c(z) co(z)
then for each r > 1,

A.(f) A.(c)
2rKo (1 ko)( + r-")

(n 0,1,2,...).
Equality occurs only for the functions f (z) c(z)
and f(z) c (-- z).

Remark 1. In the extreme case r , one
obtains at once that for f C, then

limlA.(f)]Klim]A.(co) 1,

(n= 0,1,2,’"), V0e [0,2)
which coincides with the standard coefficient esti-
mate proved by Loewner [10] in the class C as ex-

pected. (For the asymptotic behaviour of ko and K as

r , see the infinite product expansion of ko and
K in terms of home q given in [9, p.25].)

Theorem 11. If f P and c(z) is as in

Theorem 1 O, then for each r > 1,
A,(f) 2A,(c), (n 0,,2,’").

Equality occurs only for the functions f(z) p(z)
l+z

and f(z) p ( z) where p (z) 1 z"
Remark 2. It follows from Theorem 10 and

Remark 1 that forf P,
lim A.(f) < 2, (n 0,1,2,...), v 0 [o,2rc)

which coincides with the standard coefficient esti-

mate proved by Carathodory [5].
Theorem 12. If f T and k(z) is the Koebe

function, then for each r > 1,

A.(f) < A.(k)
n

4rK3vo (1 ko) (1 r-2")
(n 1,2,...).

Equality occurs only for the functions f (z) k(z)
and f (z) k (-- z).

Remark 3. The proof for n--0 is given in

Remark 4. It follows from Theorem 12 that

forf T,
limlA.(f)]< limA.(k) n,

(n- 0,1,2,’") V0 [0,2re)
which coincides with the standard coefficient esti-

mate proved by Rogosinski 12].
As a final note we make the following con-

jecture, whose special case for r -- co is the
famous Bieberbach Conjecture.

Conjecture. If f S, then

[A(f) <-An(k)
r n

4rK(ko (1 ko)2(1 r-2n)
(n= 1,2,’"), f S

and
IAo(f) -<Ao(k), f S.

Proof of this conjecture for the cases n-
0,1,2 is given in [8].
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