Generalizations of Coefficient Estimates for Certain Classes of Analytic Functions

By Engin Haliloglu
Department of Mathematics, Istanbul Technical University, Istanbul, Turkey (Communicated by Kiyosi ITÔ, M. J. A., June 12, 1997)

Abstract: Let E_{r} be the elliptical domain

$$
E_{r}=\left\{(x, y) \in \boldsymbol{R}^{2}: \frac{x^{2}}{\left(1+\frac{1}{r^{2}}\right)^{2}}+\frac{y^{2}}{\left(1-\frac{1}{r^{2}}\right)^{2}}<1\right\}
$$

where $r>1$. Let $S\left(E_{r}\right)$ denote the class of functions $F(z)$ which are analytic and univalent in E_{r} with $F(0)=0$ and $F^{\prime}(0)=1$. In this paper, we obtain sharp bounds for the Faber coefficients of functions $F(z)$ in certain related classes and subclasses of $S\left(E_{r}\right)$. The case $r \rightarrow \infty$ gives standard coefficient estimates for the corresponding classes of functions defined on the unit disc.

1. Introduction. Let S denote the class of functions $f(z)$ which are analytic and univalent in the unit $\operatorname{disc} \boldsymbol{D}=\{z:|z|<1\}$ with the Taylor expansion

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

Coefficient problems for functions in the class S and certain subclasses and related classes of S have been attacked by several authors (see e.g., [1], [2], [5], [6], [10], and [12]). However, very little attention has been paid to the corresponding problems for functions analytic in domains Ω other than \boldsymbol{D}. For functions analytic in Ω, it is natural to use the Faber expansion as a generalization of the Taylor expansion.

In [7], we found sharp bounds for the Faber coefficients of certain classes of analytic functions in the elliptical domain

$$
E=\left\{(x, y) \in \boldsymbol{R}^{2}: \frac{x^{2}}{(5 / 4)^{2}}+\frac{y^{2}}{(3 / 4)^{2}}<1\right\}
$$

In this paper, we generalize the results of [7] to the elliptical domain

$$
E_{r}=\left\{(x, y) \in \boldsymbol{R}^{2}: \frac{x^{2}}{\left(1+\frac{1}{r^{2}}\right)^{2}}+\frac{y^{2}}{\left(1-\frac{1}{r^{2}}\right)^{2}}<1\right\}
$$

where $r>1$, in which the case $r=2$ gives the results of [7]. Here it is important that the case $r \rightarrow \infty$ yields the classical coefficient estimates for the corresponding classes of functions in \boldsymbol{D}. As known for $r \rightarrow \infty$, there are infinitely many

Subject Classification AMS, No. 30C45, 33C45.
extremal functions. However, it is interesting that for each $r>1$ there are two extremal functions in E_{r} corresponding to the number of invariant rotations of E_{r}.
2. Preliminaries. Let Ω be a bounded, simply connected domain in \boldsymbol{C} containing the origin. Let $g(z)$ be the unique, one-to-one and analytic mapping of $\Delta=\{z:|z|>1\}$ onto $C \backslash \bar{\Omega}$ with

$$
\begin{equation*}
g(z)=c z+\sum_{n=0}^{\infty} \frac{c_{n}}{z^{n}},(c>0, z \in \Delta) \tag{2}
\end{equation*}
$$

Assume that Ω has capacity 1 so that $c=1$ in (2). The Faber polynomials, $\left\{\Phi_{n}(z)\right\}_{n=0}^{\infty}$, associated with Ω (or $g(z)$) are defined by the generating function relation [6, p.118]

$$
\begin{equation*}
\frac{\eta g^{\prime}(\eta)}{g(\eta)-z}=\sum_{n=0}^{\infty} \Phi_{n}(z) \eta^{-n} \tag{3}
\end{equation*}
$$

If $\partial \Omega$ is analytic and $F(z)$ is analytic in Int Ω, then $F(z)$ can be expanded into a series of the form

$$
\begin{equation*}
F(z)=\sum_{n=0}^{\infty} A_{n} \Phi_{n}(z), z \in \operatorname{Int} \Omega \tag{4}
\end{equation*}
$$

where

$$
A_{n}=\frac{1}{2 \pi i} \int_{|z|=\rho} F(g(z)) z^{-n-1} d z
$$

with $\rho<1$ and close to 1 . In addition, the series in (4), called the Faber series, converges uniformly on compact subsets of $\operatorname{Int} \Omega$ (see e.g., [13, p.42]).

The function

$$
g(z)=z+\frac{1}{r^{2} z}, r>1
$$

is the one-to-one, analytic mapping of Δ onto
$\boldsymbol{C} \backslash \overline{\boldsymbol{E}_{r}}$. One obtains from (3) that the Faber polynomials, $\left\{\Phi_{n}(z)\right\}_{n=0}^{\infty}$, associated with E_{r} are given by

$$
\Phi_{n}(z)=2^{n} r^{-n} P_{n}\left(\frac{r z}{2}\right),(n=0,1,2, \cdots)
$$

Here $\left\{P_{n}(z)\right\}_{n=0}^{\infty}$ are the monic Chebyshev polynomials of degree n, which are given by

$$
\begin{gathered}
P_{n}(z)=2^{-n}\left\{\left[z+\sqrt{z^{2}-1}\right]^{n}+\left[z-\sqrt{z^{2}-1}\right]^{n}\right\} \\
(n=1,2,3, \cdots)
\end{gathered}
$$

and

$$
P_{0}(z)=1
$$

Let $\operatorname{sn}(z ; q)$ be the Jacobi elliptic sine function with nome q , and modulus k_{0}, and let

$$
K=\int_{0}^{1} \frac{d t}{\sqrt{1-t^{2}} \sqrt{1-k_{0}^{2} t^{2}}}
$$

(see [9, Chap. 2]). Then the function

$$
\varphi(z)=\sqrt{k_{0}} \operatorname{sn}\left(\frac{2 K}{\pi} \sin ^{-1} \frac{r z}{2} ; \frac{1}{r^{4}}\right)
$$

is the one-to-one, analytic mapping of E_{r} onto \boldsymbol{D} with $\varphi(0)=0$ and $\varphi^{\prime}(0)=\frac{r \sqrt{k_{0}} K}{\pi}$ (see [11, p.296]).

Let $S\left(E_{r}\right)$ denote the class of functions $F(z)$ which are analytic and univalent in E_{r} and satisfying the conditions $F(0)=0$ and $F^{\prime}(0)=$ 1. Also, let the class $C\left(E_{r}\right)$ be defined as $C\left(E_{r}\right)=\left\{F(z) \in S\left(E_{r}\right): F\left(E_{r}\right)\right.$ is convex $\}$.
In addition, let $T\left(E_{r}\right)$ denote the class of functions $F(z)$ analytic in E_{r}, satisfying the conditions $F(0)=0$ and $F^{\prime}(0)=1$ and having real values for $-1-\frac{1}{r^{2}}<z<1+\frac{1}{r^{2}}$ and nonreal values elsewhere. Finally, let $P\left(E_{r}\right)$ denote the class of functions $P(z)$ analytic in E_{r} with $P(0)=\frac{1}{\varphi^{\prime}(0)}=\frac{r \sqrt{k_{0}} K}{\pi} \quad$ and $\quad \operatorname{Re}\{P(z)\}>0$. (The condition $F(0)=\frac{1}{\varphi^{\prime}(0)}$ is imposed for convenience.)

If $f(z) \in S$, then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{f(\varphi(z))}{\varphi^{\prime}(0)} \tag{5}
\end{equation*}
$$

is in $S\left(E_{\gamma}\right)$ and conversly every function $F(z) \in$ $S\left(E_{r}\right)$ has such a representation. In a similar way, if $F(z)$ is in one of the classes $C\left(E_{r}\right)$, $P\left(E_{r}\right)$ or $T\left(E_{r}\right)$ then $F(z)$ may be written as in (5) for some $f(z)$ in the classes of convex functions C, functions with positive real part P or
typically real functions T defined for \boldsymbol{D} (see e.g., [6, Chap. 2]), respectively. Because of representation, denote the Faber coefficients $\left\{A_{n}\right\}_{n=0}^{\infty}$ of $F(z)$ in the classes defined above by $\left\{A_{n}(f)\right\}_{n=0}^{\infty}$, where $f(z)$ is the corresponding function in \boldsymbol{D}, given by (5).
3. Main Results. Let $F(z)$ be analytic in E_{r} and have the Faber coefficients $\left\{A_{n}\right\}_{n=0}^{\infty}$. Then from the orthogonality of the Chebyshev polynomials we see at once that $\left\{A_{n}\right\}_{n=0}^{\infty}$ are given by the formula
$A_{n}=\frac{r^{n}}{\pi} \int_{0}^{\pi} F\left(\frac{2 \cos \theta}{r}\right) \cos n \theta d \theta,(n=0,1,2, \cdots)$. As a result, if $F(z)$ is in the one of the classes $S\left(E_{r}\right), C\left(E_{r}\right), P\left(E_{r}\right)$ and $T\left(E_{r}\right)$, then the Faber coefficients, $\left\{A_{n}(f)\right\}_{n=0}^{\infty}$, of $F(z)$ are given by

$$
\begin{gather*}
A_{n}(f)=\frac{r^{n-1}}{K \sqrt{k_{0}}} \int_{0}^{\pi} f\left(\varphi\left(\frac{2 \cos \theta}{r}\right)\right) \cos n \theta d \theta \tag{6}\\
(n=0,1,2, \cdots)
\end{gather*}
$$

Let \mathscr{F} denote one of the sets C, P, and T. Then \mathscr{F} is a compact set. Hence the closed convex hull of $\mathscr{F}, \overline{\mathrm{co}} \mathscr{F}$, is also compact and since $A_{n}(f)$ is a continuous linear functional

$$
M=\max _{f \in \overline{\cos }(\mathscr{F})}\left|A_{n}(f)\right|
$$

exists. In addition, we have

$$
\begin{equation*}
\max _{f \in \mathscr{F}}\left|A_{n}(f)\right|=\max _{\operatorname{ext}(\overline{\operatorname{co}(\mathscr{F}))}}\left|A_{n}(f)\right| \tag{7}
\end{equation*}
$$

where $\operatorname{ext}(\overline{\mathrm{co}}(\mathscr{F}))$ is the set of extreme points of $\overline{\mathrm{CO}}(\mathscr{F})$.

The extreme points of $\overline{\mathbf{c o}}(C)$ and $\overline{\mathbf{c o}}(T)$ are determined in [4] as follows:
(8) $\operatorname{ext}(\overline{\operatorname{co}}(C))=\left\{f: f(z)=c_{\theta}(z), 0 \leq \theta<2 \pi\right\}$ and
(9) $\operatorname{ext}(\overline{\operatorname{co}}(T))=\left\{f: f(z)=t_{\theta}(z), 0 \leq \theta \leq \pi\right\}$ where $c_{\theta}(z)$ and $t_{\theta}(z)$ are given by

$$
\begin{gather*}
c_{\theta}(z)=\frac{z}{1-e^{i \theta} z} \tag{10}\\
t_{\theta}(z)=\frac{z}{1-2 z \cos \theta+z^{2}} \tag{11}
\end{gather*}
$$

respectively. The extreme points of $\overline{\mathrm{co}}(P)$ [3] are given by
(12) $\operatorname{ext}(\overline{\mathrm{co}}(P))=\left\{f: f(z)=p_{\theta}(z), 0 \leq \theta<2 \pi\right\}$ where

$$
\begin{equation*}
p_{\theta}(z)=\frac{1+e^{i \theta} z}{1-e^{i \theta} z} \tag{13}
\end{equation*}
$$

Using (7) with (8), (9), and (12) we see that the problem of maximizing $\left|A_{n}(f)\right|$ over the classes C, P, and T reduces to the problem of maximizing the values of $\left|A_{n}\left(c_{\theta}\right)\right|(\theta \in[0,2 \pi))$,
$\left.\left|A_{n}\left(p_{\theta}\right)\right|(\theta \in 0,2 \pi)\right)$, and $\left|A_{n}\left(t_{\theta}\right)\right|(\theta \in[0, \pi])$ over θ, respectively.

The method of [7] is used to evaluate the values of $A_{n}\left(c_{\theta}\right), A_{n}\left(t_{\theta}\right)$, and $A_{n}\left(p_{\theta}\right)$, where $A_{n}(f)$ is given by (6). Since manipulations are the same as in [7], we give only the evaluation of $A_{n}\left(c_{\theta}\right)$ for $0 \leq \theta \leq \frac{\pi}{2}$ and state the other results without proof.

Theorem 1. If $c_{\theta}(z)$ is given by (10), then $A_{n}\left(c_{\theta}\right)=$

$$
\begin{gathered}
\frac{\pi^{2} e^{-i \theta}\left(e^{i n \alpha(\theta)}-r^{-2 n} e^{-i n \alpha(\theta)}\right.}{2 r K^{2} \sqrt{k_{0}}\left(1-r^{-4 n}\right)\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}}, \\
0 \leq \theta \leq \frac{\pi}{2}, \quad(n=0,1,2, \cdots)
\end{gathered}
$$

where $0 \leq \alpha(\theta) \leq \frac{\pi}{2}$ is given by

$$
\begin{gathered}
\varphi\left[\frac{2}{r} \cos \left(\alpha(\theta)+\frac{\pi \tau}{4}\right)\right]=e^{-i \theta} \\
0 \leq \theta \leq \frac{\pi}{2} \text { with } \tau=\frac{4 i \operatorname{In} r}{\pi}
\end{gathered}
$$

Proof. The function $\frac{2 \cos z}{r}$ maps the rectangle R with vertices at the points $-\frac{\pi \tau}{4}$, $\pi-\frac{\pi \tau}{4}, \pi+\frac{\pi \tau}{4}$, and $\frac{\pi \tau}{4}$ onto E_{r}. Therefore the function $\varphi\left(\frac{2 \cos z}{r}\right)$ maps R onto \boldsymbol{D} with

$$
\begin{equation*}
\varphi\left[\frac{2}{r} \cos \left(\alpha(t)+\frac{\pi \tau}{4}\right)\right]=e^{-i t}, 0 \leq t \leq \frac{\pi}{2} \tag{14}
\end{equation*}
$$

where $\alpha(t)$ increases from 0 to $\frac{\pi}{2}$ as tincreases from 0 to $\frac{\pi}{2}$.

Integrate the function $h(z)=c_{\theta}\left(\varphi\left(\frac{2 \cos z}{r}\right)\right)$ $e^{i n z}$ over the parallelogram $A B C D$ with vertices at the points $-\pi, \pi, \pi \tau$, and $\pi \tau-2 \pi$, respectively. From (14) we see that $\alpha(\theta)+\frac{\pi \tau}{4}$ is a pole of $h(z)$ inside $A B C D$.

Let

$$
i K^{\prime}=K \tau
$$

and refer to $\operatorname{sn}\left(z ; \frac{1}{r^{4}}\right)$ as $\operatorname{sn} z$ for convenience. Then

$$
\begin{gathered}
\varphi\left(\frac{2 \cos (\pi \tau-z)}{r}\right)=\sqrt{k_{0}} \operatorname{sn}\left(\frac{2 K}{\pi}\left(\frac{\pi}{2}-\pi \tau+z\right)\right) \\
=\sqrt{k_{0}} \operatorname{sn}\left(\frac{2 K}{\pi}\left(\frac{\pi}{2}+z\right)\right)
\end{gathered}
$$

since $\operatorname{sn} z$ is doubly periodic with periods $2 i K^{\prime}$ and $4 K$. Thus

$$
\begin{gather*}
\varphi\left(\frac{2 \cos z}{r}\right)=\varphi\left(\frac{2 \cos (-z)}{r}\right) \tag{15}\\
=\varphi\left(\frac{2 \cos (\pi \tau-z)}{r}\right)
\end{gather*}
$$

It follows from (15) that $-\alpha(\theta)+\frac{3 \pi \tau}{4}$ is the other pole of $h(z)$ inside $A B C D$. So by the residue theorem,
(16) $\oint_{A B C D} h(z) d z=2 \pi i\left(\operatorname{Res}_{\alpha(\theta)+\frac{\pi \tau}{4}}+\operatorname{Res}_{\left.-\alpha(\theta)+\frac{3 \pi \tau}{4}\right)}\right.$ where $\operatorname{Res}_{z_{0}}$ denotes the residue of the function $h(z)$ at the point $z=z_{0}$.

The contribution of the integrals on $B C$ and $D A$ cancel each other because $h(z)$ is a periodic function with period 2π. Now

$$
\begin{gather*}
\int_{A B} h(z) d z=\int_{-\pi}^{\pi} h(x) d x \tag{17}\\
=2 \int_{0}^{\pi} c_{\theta}\left(\varphi\left(\frac{2 \cos x}{r}\right)\right) \cos n x d x
\end{gather*}
$$

and

$$
\begin{gathered}
\int_{C D} h(z) d z=\int_{2 \pi}^{\alpha} h(x+\pi \tau-2 \pi) d x \\
=-\int_{0}^{2 \pi} h(x+\pi \tau) d x .
\end{gathered}
$$

From (15) we obtain

$$
\text { 3) } \begin{align*}
& \int_{C D} h(z) d z=-\int_{0}^{2 \pi} e^{i n(x+\pi \tau)} c_{\theta}\left(\varphi\left(\frac{2 \cos x}{r}\right)\right) d x \tag{18}\\
= & -2 \cdot r^{-4 n} \int_{0}^{\pi} c_{\theta}\left(\varphi\left(\frac{2 \cos x}{r}\right)\right) \cos n x d x .
\end{align*}
$$

Then adding (17) and (18) results in

$$
\begin{equation*}
\oint_{A B C D} h(z) d z \tag{19}
\end{equation*}
$$

$$
=2\left(1-r^{-4 n}\right) \int_{0}^{\pi} c_{\theta}\left(\varphi\left(\frac{2 \cos x}{r}\right)\right) \cos n x d x
$$

To evaluate $\operatorname{Res}_{\alpha(\theta)+\frac{\pi \tau}{4}}$, expand the function $c_{\theta}\left(\sqrt{k_{0}} \operatorname{sn}\left(u+u_{0}\right)\right)$ about $u=0$, where

$$
\begin{equation*}
u_{0}=\frac{2 K}{\pi}\left(\frac{\pi}{2}-\alpha(\theta)-\frac{\pi \tau}{4}\right) \tag{20}
\end{equation*}
$$

The addition formula for $\mathrm{sn} u[9, \mathrm{p} .33]$ yields

$$
\begin{equation*}
\sqrt{k_{0}} \operatorname{sn}\left(u+u_{0}\right) \tag{21}
\end{equation*}
$$

$$
=\frac{\sqrt{k_{0}} \operatorname{sn} u \operatorname{cn} u_{0} \operatorname{dn} u_{0}+\sqrt{k_{0}} \operatorname{sn} u_{0} \operatorname{cn} u \operatorname{dn} u}{1-k_{0}^{2} \operatorname{sn}^{2} u_{0} \operatorname{sn}^{2} u}
$$

where $\mathrm{cn} z$ and $\operatorname{dn} z$ refer to $\mathrm{cn}\left(z ; \frac{1}{r^{4}}\right)$ and $\operatorname{dn}\left(z ; \frac{1}{r^{4}}\right)$, respectively. It follows from (14) that

$$
\sqrt{k_{0}} \operatorname{sn} u_{0}=e^{-i \theta}, \quad 0 \leq \theta \leq \frac{\pi}{2} .
$$

To evaluate $\mathrm{cn} u_{0}$ and $\mathrm{dn} u_{0}$ employ the identities
$\mathrm{sn}^{2} z+\mathrm{cn}^{2} z=1$
and
(23)

$$
k_{0}^{2} \operatorname{sn}^{2} z+\operatorname{dn}^{2} z=1
$$

[9, p.25]. To determine whether to use + or sign for $\mathrm{cn} u_{0}$ and $\mathrm{cn} u_{0}$ check the signs of $\operatorname{Re}\left\{\operatorname{cn}\left(x-\frac{i K^{\prime}}{2}\right)\right\} \quad$ and $\quad R e\left\{\operatorname{dn}\left(x-\frac{i K^{\prime}}{2}\right)\right\}$, respectively. Deduce from the addition formulas for cn u and dn u [9, p.34] that

$$
\operatorname{cn}\left(x-\frac{i K^{\prime}}{2}\right)=\sqrt{\frac{1+k_{0}}{k_{0}}} \frac{\operatorname{cn} x+i \operatorname{sn} x \operatorname{dn} x}{1+k_{0} \operatorname{sn}^{2} x}
$$

and
$\operatorname{dn}\left(x-\frac{i K^{\prime}}{2}\right)=\frac{\sqrt{1+k_{0}}\left(\operatorname{dn} x+i k_{0} \operatorname{sn} x \operatorname{cn} x\right)}{1+k_{0} \operatorname{sn}^{2} x}$. Thus $\operatorname{Re}\left\{\operatorname{cn}\left(x-\frac{i K^{\prime}}{2}\right)\right\} \geq 0$ and $\operatorname{Re}\{\operatorname{dn}(x-$ $\left.\left.\frac{i K^{\prime}}{2}\right)\right\} \geq 0$ for $x \in[0, K]$ since cn x decreases from 1 to 0 and $\operatorname{dn} x$ decreases from 1 to $\sqrt{1-k_{0}^{2}}$ for $x \in[0, K]$. Hence using (22) and (23) we obtain

$$
\operatorname{cn} u_{0}=\sqrt{1-\frac{e^{-2 i \theta}}{k_{0}}}
$$

and

$$
\operatorname{dn} u_{0}=\sqrt{1-k_{0} e^{-2 i \theta}} .
$$

Choosing the principal branch as $-\pi<\arg z$ $\leq \pi$ we obtain

$$
0 \leq \arg \left(\operatorname{cn} u_{0}\right) \leq \frac{\pi}{2}
$$

and

$$
0 \leq \arg \left(\operatorname{dn} u_{0}\right) \leq \frac{\pi}{4}
$$

Therefore

$$
0 \leq \arg \left(\operatorname{cn} u_{0} \operatorname{dn} u_{0}\right) \leq \frac{3 \pi}{4}
$$

which implies
(24) $\sqrt{k_{0}}$ cn $u_{0} \operatorname{dn} u_{0}=i e^{-i \theta}\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}$. Using

$$
\begin{equation*}
\operatorname{sn} u=u-\frac{1}{3!}\left(1+k_{0}^{2}\right) u^{3}+\cdots \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{cn} u=1-\frac{1}{2!} u^{2}+\cdots \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{dn} u=1-\frac{1}{2!} k_{0}^{2} u^{2}+\cdots \tag{27}
\end{equation*}
$$

[9, p.37], and (24) in (21) and doing necessary calculations result in

$$
\begin{aligned}
& \sqrt{k_{0}} \operatorname{sn}\left(u+u_{0}\right) \\
& =e^{-i \theta}+i e^{-i \theta}\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2} u+\cdots
\end{aligned}
$$

Thus
$c_{\theta}\left(\sqrt{k_{0}} \operatorname{sn}\left(u+u_{0}\right)\right)=\frac{i e^{-i \theta}}{\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2} u}$ $+\cdots$.
or

$$
c_{\theta}\left(\sqrt{k_{0}} \operatorname{sn}\left(\frac{2 K}{\pi}\left(\frac{\pi}{2}-z\right)\right)\right)=
$$

$$
\frac{\pi i e^{-i \theta}}{2 K\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta^{1 / 2}\left(z-\alpha(\theta)-\frac{\pi \tau}{4}\right)\right.}
$$

$$
+\cdots
$$

Hence we obtain
(29) $\operatorname{Res}_{\alpha(\theta)+\frac{\pi \tau}{4}}=-\frac{\pi i e^{-i \theta} r^{-n} e^{i n \alpha(\theta)}}{2 K\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}}$.

In a similar way, residue of $h(z)$ at the point $-\alpha(\theta)+\frac{3 \pi \tau}{4}$ may be obtained as
(30) $\operatorname{Res}_{-\alpha(\theta)+\frac{3 \pi \tau}{4}}=\frac{\pi i e^{-i \theta} r^{-3 n} e^{-i n \alpha(\theta)}}{2 K\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}}$.

Substituting (29) and (30) into (16) yields

$$
\begin{equation*}
\oint_{A B C D} h(z) d z \tag{31}
\end{equation*}
$$

$$
=\frac{\pi^{2} e^{-i \theta} r^{-n}}{K\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)}\left(e^{i n \alpha(\theta)}-r^{-2 n} e^{-i n \alpha(\theta)}\right)
$$

Comparing (19) and (31) gives the desired result.
Theorem 2. If $c_{\theta}(z)$ is given by (10), then

$$
\begin{aligned}
A_{n}\left(c_{\theta}\right)= & \frac{(-1)^{n} \pi^{2} e^{-i \theta}\left(e^{-i n \alpha(\pi-\theta)}-r^{-2 n} e^{i n \alpha(\pi-\theta)}\right)}{2 r K^{2} \sqrt{k_{0}}\left(1-r^{-4 n}\right)\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}} \\
& \frac{\pi}{2} \leq \theta \leq \pi, \quad(n=0,1,2, \cdots)
\end{aligned}
$$

where $\alpha(\theta)$ is as in Theorem 1.
Theorem 3. If $c_{\theta}(z)$ is given by (10), then

$$
\begin{gathered}
A_{n}\left(c_{\theta}\right)=\frac{(-1)^{n} \pi^{2} e^{-i \theta}\left(e^{i n \alpha(\theta-\pi)}-r^{-2 n} e^{-i n \alpha(\theta-\pi)}\right)}{2 r K^{2} \sqrt{k_{0}}\left(1-r^{-4 n}\right)\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}} \\
\pi \leq \theta \leq \frac{3 \pi}{2}, \quad(n=0,1,2, \cdots)
\end{gathered}
$$

where $\alpha(\theta)$ is as in Theorem 1.
Theorem 4. If $c_{\theta}(z)$ is given by (10), then

$$
\begin{aligned}
A_{n}\left(c_{\theta}\right)= & \frac{\pi^{2} e^{-i \theta}\left(e^{-i n \alpha(2 \pi-\theta)}-r^{-2 n} e^{i n \alpha(2 \pi-\theta)}\right)}{2 r K^{2} \sqrt{k_{0}}\left(1-r^{-4 n}\right)\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}}, \\
& \frac{3 \pi}{2} \leq \theta \leq 2 \pi, \quad(n=0,1,2, \cdots)
\end{aligned}
$$

where $\alpha(\theta)$ is as in Theorem 1.
Theorem 5. If $p_{\theta}(z)$ is given by (13), then $A_{n}\left(p_{\theta}\right)=2 A_{n}\left(c_{\theta}\right), \quad 0 \leq \theta<2 \pi, \quad(n=0,1,2, \cdots)$.

Theorem 6. If $t_{\theta}(z)$ is given by (11), and $k(z)$ is the Koebe function given by

$$
k(z)=t_{0}(z)=\frac{z}{(1-z)^{2}}
$$

then

$$
\begin{gathered}
A_{n}(k)=\frac{\pi^{3} n}{4 r K^{3} \sqrt{k_{0}}\left(1-k_{0}\right)^{2}\left(1-r^{-2 n}\right)} \\
(n=1,2, \cdots)
\end{gathered}
$$

Theorem 7. If $t_{\theta}(z)$ is given by (11), then

$$
\begin{gathered}
A_{n}\left(t_{\pi}\right)=\frac{(-1)^{n-1} \pi^{3} n}{4 r K^{3} \sqrt{k_{0}}\left(1-k_{0}\right)^{2}\left(1-r^{-2 n}\right)} \\
(n=1,2, \cdots)
\end{gathered}
$$

Theorem 8. If $t_{\theta}(z)$ is given by (11), then $A_{n}\left(t_{\theta}\right)=$

$$
\begin{gathered}
\frac{\pi^{2} \sin n \alpha(\theta)}{2 r K^{2} \sqrt{k_{0}}\left(1-r^{-2 n}\right) \sin \theta\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}} \\
0<\theta \leq \frac{\pi}{2}, \quad(n=1,2, \cdots)
\end{gathered}
$$

where $\alpha(\theta)$ is as in Theorem 1.
Theorem 9. If $t_{\theta}(z)$ is given by (11), then

$$
\begin{gathered}
A_{n}\left(t_{\theta}\right)=\frac{(-1)^{n-1} \pi^{2} \sin n[\alpha(\pi-\theta)]}{2 r K^{2} \sqrt{k_{0}}\left(1-r^{-2 n}\right) \sin \theta\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}} \\
\frac{\pi}{2} \leq \theta<\pi, \quad(n=1,2, \cdots)
\end{gathered}
$$

where $\alpha(\theta)$ is as in Theorem 1.
In the following three theorems we obtain sharp bounds for the Faber coefficients of functions in the classes $C\left(E_{r}\right), P\left(E_{r}\right)$ and $T\left(E_{r}\right)$. Here we give only the statements of the results since proofs are similar to the proofs given in [7].

Theorem 10. If $f \in C$ and $c(z)=c_{0}(z)=$ $\frac{z}{1-z}$, then for each $r>1$,

$$
\begin{gathered}
\left|A_{n}(f)\right| \leq A_{n}(c)=\frac{\pi^{2}}{2 r K^{2} \sqrt{k_{0}}\left(1-k_{0}\right)\left(1+r^{-2 n}\right)}, \\
(n=0,1,2, \cdots)
\end{gathered}
$$

Equality occurs only for the functions $f(z)=c(z)$ and $f(z)=-c(-z)$.

Remark 1. In the extreme case $r \rightarrow \infty$, one obtains at once that for $f \in C$, then

$$
\begin{gathered}
\lim _{r \rightarrow \infty}\left|A_{n}(f)\right| \leq \lim _{r \rightarrow \infty}\left|A_{n}\left(c_{\theta}\right)\right|=1 \\
\quad(n=0,1,2, \cdots), \forall \theta \in[0,2 \pi)
\end{gathered}
$$

which coincides with the standard coefficient estimate proved by Loewner [10] in the class C as expected. (For the asymptotic behaviour of k_{0} and K as $r \rightarrow \infty$, see the infinite product expansion of k_{0} and K in terms of nome q given in [9, p.25].)

Theorem 11. If $f \in P$ and $c(z)$ is as in Theorem 10, then for each $r>1$,

$$
\left|A_{n}(f)\right| \leq 2 A_{n}(c), \quad(n=0,1,2, \cdots)
$$

Equality occurs only for the functions $f(z)=p(z)$ and $f(z)=p(-z)$ where $p(z)=\frac{1+z}{1-z}$.

Remark 2. It follows from Theorem 10 and Remark 1 that for $f \in P$,
$\lim _{r \rightarrow \infty}\left|A_{n}(f)\right| \leq 2, \quad(n=0,1,2, \cdots), \forall \theta \in[0,2 \pi)$ which coincides with the standard coefficient estimate proved by Carathéodory [5].

Theorem 12. If $f \in T$ and $k(z)$ is the Koebe function, then for each $r>1$,

$$
\begin{gathered}
\left|A_{n}(f)\right| \leq A_{n}(k)=\frac{\pi^{3} n}{4 r K^{3} \sqrt{k_{0}}\left(1-k_{0}\right)^{2}\left(1-r^{-2 n}\right)}, \\
(n=1,2, \cdots)
\end{gathered}
$$

Equality occurs only for the functions $f(z)=k(z)$ and $f(z)=-k(-z)$.

Remark 3. The proof for $n=0$ is given in [8].

Remark 4. It follows from Theorem 12 that for $f \in T$,

$$
\begin{aligned}
& \lim _{r \rightarrow \infty}\left|A_{n}(f)\right| \leq \lim _{r \rightarrow \infty} A_{n}(k)=n \\
& (n=0,1,2, \cdots) \forall \theta \in[0,2 \pi)
\end{aligned}
$$

which coincides with the standard coefficient estimate proved by Rogosinski[12].

As a final note we make the following conjecture, whose special case for $r \rightarrow \infty$ is the famous Bieberbach Conjecture.

Conjecture. If $f \in S$, then

$$
\begin{gathered}
\left|A_{n}(f)\right| \leq A n(k)=\frac{\pi^{3} n}{4 r K^{3} \sqrt{k_{0}}\left(1-k_{0}\right)^{2}\left(1-r^{-2 n}\right)} \\
(n=1,2, \cdots), \quad f \in S
\end{gathered}
$$

and

$$
\left|A_{0}(f)\right| \leq A_{0}(k), \quad f \in S
$$

Proof of this conjecture for the cases $n=$ $0,1,2$ is given in [8].

References

[1] L. Bieberbach: Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. S-B. Preuss. Akad. Wiss., pp. 940-955 (1916).
[2] L. de Branges: Aproof of the Bieberbach conjecture. Acta Math., 154, 137-152 (1985).
[3] D. A. Brannan, J. G. Clunie, and W. E. Kirwan: On the coefficient problem for functions of bounded boundary rotation. Ann. Acad. Sci. Fenn. Ser. Al Math. Phys., 523 (1973).
[4] L. Brickman, T. H. MacGregor, and D. R. Wilken: Convex hulls of some classical families of univalent functions. Trans. Amer. Math. Soc., 156,

91-107 (1971).
[5] C. Carathéodory: Über den Variabilitătsbereich der Koeffizienten von Pontenzreihen, die gegegbene Werte nicht annehmen. Math. Ann., 64, 95-115 (1907).
[6] P. L. Duren: Univalent Functions. SpringerVerlag, New York (1983).
[7] E. Haliloglu: On the Faber coefficients of functions univalent in an ellipse. Trans. Amer. Math. Soc. (to appear).
[8] E. Haliloglu: Bounds for Faber coefficients of functions univalent in an ellipse. Ph. D. Thesis, Iowa State University, Ames, LA (1993).
[9] D. F. Lawden: Elliptic Functions and Applica-
tions. Springer-Verlag, New York (1989).
[10] K. Loewner: Untersuchungen über die Verzerrung bei konformen Abbildungen des Einheitskreises $|z|<1$, die durch Funktionen mit nichtverschwindender Ableitung geliefert werden. S.-B. Sächs. Akad. Wiss., 69, 89-106 (1917).
[11] Z. Nehari: Conformal Mapping. McGraw-Hill, New York (1952).
[12] W. W. Rogosinski: Über positive harmonische Entwicklungen und typischreelle Potenzreihen. Math. Z., 35, 93-121 (1932).
[13] G. Schober: Univalent functions-selected topics. Lecture Notes in Math., no. 478, SpringerVerlag, York (1975).

