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1. Introduction. Let X)-- K c R where
K is a compact set whose boundary K is of
class C 2. We put OX) F OK. Then we consid-
er the stationary problem for the heat convection
equation (HCE) in

(1) (u r’) u (r’p)
-t- {1 c(0- Oo)}g

div u 0 in
(u" I7)0- A0 in Q,

(2/ ul =o, 0l =Oo>O,
lim u(z) O, lim O(x) O,

where u u(z) is the velocity vector, p p(x)
is the pressure and 0 0(x) is the temperature;, , c, p, and g g(x) are the kinematic vis-

cosity, the thermal conductivity, the coefficient of
volume expansion, the density at 0 Oo and the
gravitational vector, respectively.

As concerns the exterior problem of (HCE),
Hishida [2] proved the global existence of the
strong solution of the initial value problem (IVP)
in the case that K is a ball. Recently, eda-
Matsuda [101 showed the existence and unique-
ness of weak solutions of (IVP) when K is a com-

pact set with the boundary of class C In [10],
the approach to prove the existence of weak solu-
tions was "the extending domain method", that is,
the exterior domain D was approximated by in-
terior domains X) B fl Q (B, is a ball with

radius n and center at O) as n---,o (see
Ladyzhenskaya [31). On the other hand, Morimoto
[6], [71 studied the stationary problem of (HCE) in
interior domains and showed the existence and
uniqueness of weak solutions. The purpose of the
present paper is to show the existence of station-
ary weak solutions of (HCE) by using "the ex-
tending domain method". Moreover, we also study
the uniqueness of a weak solution.

2. Preliminaries. We make several assump-
tions (A 1)-" (A 3):

(A1) coo c intK (coo is a neighbourhood of
the origine O) and K c B B(O, d) which is a

ball with radius d and center at O. (A2) 0f2- F
OK C. (A3) g(x)is a bounded and con-

tinuous vector function in Ra\coo Moreover
there exist Ro > 0, CRo > 0 such that gl < CR
/1 x for Ix] > Ro (e > 0 is arbitrary).

Remark 1. By (A3), we can take Cw > 0

such that gl Ix <- for x Ra\ coo.
6

Moreover g L(D) for p 2 g.
Here, in order to transform the boundary

condition on 0 to a homogenuous one, we intro-
duce an auxiliary function 0 (see 1] p. 131, [1 1]
p.175)"

Lemma 2.1. There exists a function 0 which

satisfies the following properties (i) --(iii): (i)
O(F) Oo. (ii) 0 C(Ra). (iii) For any e > 0
and p >-- 1, we can retatee O, if necessary, such that
0 IlL, < s.

Now we make a change of variable: 0 0 +
0. And after changing of variable, we use the
same letter 0. The system of equations (1) and (2)
is transformed to the following:

(3) (u. V)u (Vp)/p Og + Au
+ {1 a(O-- Oo)}g in

div u 0 in
(u [7)0 AO (u I7)0 + A in

(4) 0l -o,
lim u(x) O, lim O(x) O.

We use several function spaces. G denotes X)

or n"
W’(G) (u Du L’(G), a <_ k),

Wo’(G) the completion of Co(G) in W’(G),
Do(G)- { C’(G);divo-0}, D(G) {

Co (G F) (F) 0},
Ha(G) (resp. H2(G)) the completion of Do(G)
in L(G) (resp. WI(G)), V (resp. W) the
completion of 0(9)(resp. 0(9))in [l" [Ig(),
where u I[g(o) u gd the com-
pletion of D(Q) in W’2(Q) (it turns out

Ho (,) Wo, ([2,) ).
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We make use of some inequalities. Constants
which appear in those inequalities depend only
on the dimension and they are independent of do-
mains (see Chap. of [3]).

Lemma 2.2. Suppose the space dimension is 3
and G is bounded or unbounded. Then

(i) For u W’(G) (or V or W), we have
(5) [IL(G) - C [7g IILz(G), WlC$’e C (48)1/6.
(ii) (HOlder’s inequality). If each integral makes
sense, then we have

1 1+1_1p,q,r>o+
3. Results. We will give he definition of

a weak solution.
Definition 3.1. t(u, ) W s called a

stationary weak soluto of (HCE) f t satisfies (7)
aa (8) for art D() ana D()"

+ ({ a(-- o)}#, ) -0,

Remark 2. If u , W, then u(F)
O, O(F)- O, and moreover by (5) lim,, u(w)

0, lim,, 0(w) 0.
Then we have following results.
Theorem 3.2. Suppose assumpos (A i), (A2),

an (A3) are satisfied. Then a stationary weak solu-
ton of (HCE) exists.

Theorem 3.3. Let assumpons (A1), (A2), and

(A3) be satisfied. If there exists a stationary weak
soluto saHsfyng the followng Condto (C):

(where c (48) /).
then the wea solution is unique.

4. Proof f results. According to the
approach of "the extending domain method", we

first present a lemma which ensures the exist-

ence of weak solutions of interior roblems (Pn)
in domains D.- B. D. The interior problem
(Pn) is as follows:

(v" g)v- () / Og + v
+ {1 (0-- Oo)}g in D,

(9)
div v 0 in D.,

(v’)O-- 0-- (v" )0+ in D.,
(10) vlo.--0, 01-0, where 0.--F+OB..
Here we give the definition of a weak solution for
the problem (Pn)"

Definition 4.1. t(v, O) H2 (,.(n) X no (n)
is called a weak solution for (Pn) if it satisfies the
following"
(11) ((v" 7)9, v) --v(Vv, I79) (cgO, 9)
+ ((1 a(O- Oo)}g, 9) O, for 9 Da(Qn),
(12) ((v. V)$, O) (VO, V) ((v V)O, b)

(gO, ITch) O, for D().
Now we will state a key lemma to carry out "the
extending domain method".

Lemma 4.2. Let assumptions (A1), (A2), and

(A3) be satisfied. Then we can choose an appropriate

extension 0 which is independent of 2 such that,
making use of it in common to all 2 we can con-

struct a weak solution t(Vn, On) of (Pn).
Proof of Lemma 4.2. We use Galerkin’s

method and Brouwer’s fixed point theorem. Let n
be arbitrarily fixed. Let {@j} c D(Y2n)(resp.
{bj} c D(,Qn)) be a sequence of functions,
linearly independent and total in H(Qn) (resp.
Hd(n)). Since n is bounded, we can take them
such that (V, V) , (V, V) .
We put

V E jj, 0
(m) E jj,

j=l j=

then we consider the next system of equations:
(m) (m) (m)

(13) ((v .V),v )-(Vv ,)
(ago(, ) + ({1 a(- Oo)}g, ) 0,

(14) ((v() F), 0) (VO), V)
((v ()- V), ) (V0, V) 0,

where 1 j gm. Using the representations of
(m) (m)

v 0 we have

k,l

(ag, ) + ({1 a(0-- Oo)}g, ) 0,
k

(6) Z ((. V), ,)
k,l

E ((, v)o, ) r(vo, v) o,
k

where 1 j m.
We put (;) (1,"" ", m, 1,’’’, m),

P( ) (PI( ),’" ", Pm( )) and
1

(7) P( ;) (Z ,(( v),
k,l

Z (ag, ) + ({1 a(0- Oo)}g,
k

1
(is) P+( ;) ( ((- v), )

Z ((, v)o, ) (v,
k

where 1 j m. Then our problem is reduced
to obtain a fixed point of P mRm Now
we will use Brouwer’s fixed point theorem.
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Namely, if all possible solutions (;r]) of the
equation (e ;rt) --2P( ;rl) for 2 [0,1] stay
in a some ball (e;)[] <_ r, then there exists a
fixed point of P. Multiplying (15)(resp. (16)) by

e) (resp. 7)), summing up with respect to j and
(m) (m)) (m) (m)

noting ((v( g) v v 0, ((v g) O
O() 0, we have:
(19) (Vv ,Vv + (ago v

(m))({1- a(0- Oo))g, v 0
(20) (VO(, VO() + ((v" V)O, 0)

+ (VO, VO) O.
Using the assumption (A3) and Lemma 2.2, we
have from (19)

(21) ]j[ =Vv -Z(;)
j=l

< {[ (gO(m) (m) (m))v )1 + (1+ Oo) l(g, v
(m)+ (g0, v

(m)(3 g II-II o(m)116" V 116 + (1
(m)

(m) (m)

(m)

0ll,<>, c- (4a From (21)
(m)

Moreover we have from (20)
m

o
j=l

{1 ((V (m) V) O m), O) + (VO, VO (m))
(3c vm’ II. 0

(m, I1" 0 113 + I1"

from which we get

<24> 110<> a<3cllv<> II. 110113
Combining (22) and (24), then we have
(5) r N 2(3ca g (3c v II-

+ c(1 + aOo) g II} + 3ca g I1<, 113},
Recalling (iii) of Lemma 2.1, we can take 0 satis-
fying

9c3 g
ll 0 [[a < 1(26) r

We note 0 is taken in common not only in m but
also for all Dn(n 2 1). Now we have for such 0

{3c2c g II 0

+ c(1 + cOo) g I[} + )-cu
g

3c [Ig
Combining (24) and (27), we find

+ c(1 + aOo)IIgIl+ r Ilgl[<>} + ll
3c g II

2 2r { 1

1_

9c4a g IIN
1 1

Since 0 2 1 and < we have
1 27 1 7

from (27) and (28)
1

(v) v( 5 (1 r
3c g

1
(3O) r 1 r 3cJJJJ

9C4 g II (m)
Thus we have gotten uniform estimates on v
and 0 (m>. Indeed, r and r are both independent
of 2, m, n. Hence solutions of ( ;) 2P( ;)
for 2 [0 1] lie in a -ball {=
+12) N r+ r rZ}. Therefore, due to
Brouwer’s fixed point theorem, we have obtained
a solution (v m), 0) of the equations (13) and
(14) with the property (after getting the fixed
point, repeat the same calculation as 2 1)

Then, thanks to (31), we can find sub-
(m) (m)

sequences v O (we used the same letters)
and v H(.), O H(D.) such that

(m)
v v weakly in H (Dn), strongly in H(Dn),
0(m) 0 weakly in H2(n), strongly in L(n).

Passing to the limit in (13) and (14) as
m , we find that t(v, O) is a desired weak
solution. We skip the remaining part of the proof
of Lemma 4.2.

Moreover, we state a lemma which we will
use to prove Theorem 3.2.

Lemma 4.3. Let t(vn, On) be a weak solution

for (Pn)obtained in Lemma 4.2. Put Un(X)-
Vn(X) if x Qn and Un(X) 0 if x Q \ Qn
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0n(x) On(x) if X n and On(x) 0 if x
[2 \ [2n. Then it holds that ’(un, On) V Wand
furthereore
(32) ]Vu r, I1 r,
where ri, r be take uniformly n.

Proof of Lemma 4.3. I is easy to show
t(un, 0n) V x W. As for the uniform estimate

(32), by means of the lower semicontinuity of the
norm of Hilbert space with respect to weak con-
vergence, we have from (31)that IIv r and

VOnll r (uniformly in n). But we can get
these uniform estimates directly. Indeed, since

H(n) (resp. H(n)) is a completion of
D(n) (resp. D(n)) in Wl’2(n), from the
weak form (11) and (12), we have

(33) (Vv, Vv) + (agOg, v)
({1 a(O- Oo)}g, v) O,

(34) (VOn, VOn) + ((v V)O, 0)
+ (V0, V O,) 0.

Then uniform estimates on Vvn, VO follow
from (33) and (34) by the similar calculation
used in the proof of Lemma 4.2. Estimates (32)
are immediate consequences of those on Vv and

Proof of Theorem 3.2. Considering uniform

estimates Vun rl and V0n r (uniform
in n) in Lemma 4.3, applying Rellich’s theorem
and using rhe diagonal argument, we can choose
subsequences Un,, 0n, and u V, 0 W such
rhat
(35) un, u weakly in V, srrongly in Loc(),
(36) 0n, 0 weakly in W, srrongly in Ltoc().

Once we get such subsequences and limits,
then we can show that t(u, O) becomes a station-

ary weak solution of (HCE). In fact, let t(@, ) be
an arbirrarily given test function, then we find a
bounded domain ’ and a number no such thar
supp @, supp ’ and ’ no n for all
n no. Then we have by Lemma 2.2
(37) I((u,’V),u,)- ((u" V),u)l

((Un," V), Un,- U),
+ (((Un,- U) V), U),

3 U, U I1, Un, I1< I1,>

Un, U I,,
and this implies the righr hand side of (37) goes

to 0 as n’ . Similarly

(38) ((u.,." 17), O..)s-- ((u-I7), O)sa

hence we see the right hand side of (38) tends to
0 as n’. We find the other terms in the
weak formula also converge to the corresponding
ones. Thus we see (u, O) is a stationary weak
solution of (HCE).

Now, we will return to the claim (35) and
(36). Since ][Vun re, we can select a subsequ-
ence Un and u V such that u.u weakly in

V. Moreover, put Kj- Dj, then we have a sequ-
ence of compact sets {Kj}j= satisfying K K
"’’ D (j ). We note that for any com-

pact set F D there is a number Jo such that
F c Ko. Now for each Kj we choose aj(z)
C(D) satisfying 0 N N 1, l, 1, and (Kj
) supp % Dj+. Here let us construct {u.,}.
First we make a sequence {a(Z)Un(Z)}=l, then
this becomes a uniformly bounded sequence of
W’(D). In fact, since u.(F)- O, using Poin-

car’s inequality on D2, we have IIlunll
d du 1 "n I1 1 (for 1), where

II" I1,- II" II<;, d- the diameter of j. Moreov-
er

d<- III YI Ill
where III Ill ess.SUpx w(x) I. By these
estimates we see {r1n} is uniformly bounded in

W0’2(2). Hence by virture of Rellich’s theorem,
there is a subsequence {11P}7= such that it

converges strongly in L2(), and consequently
the sequence {ul}= is a strongly convergent

one in L2(K1). Next we consider a sequence

{r(x)u(x)}=. Then we see it consists of a

uniformly bounded sequence in W0’(3), so we

can select a suitable subsequence {eru}=x such
Lthat it converges strongly in (3) and

L{2}= coverges strongly in (K2). We go on
such a procedure. Choosing diagonal components
and denoting them by {n,}n=, then it converges

on all K in L(K) sense. As to {0n}n,= 1, we can
show in a similar way. Thus we have shown the
claims (35) and (36). Hence we have established
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Theorem 3.2.
Proof of Theorem 3.3. Let t(ui, 0) (i 1,2)

be two stationary weak solutions of (HCE). Sub-
tract corresponding weak fomulas. We put u-
u --u and 0--01- 02. Since Do(2) (resp.
D(2)) is dense in V (resp. W), we can replace
q D(2) (resp. b D(2)) by u (resp. 0). Us-
ing ((u2" 17) u, u) 0, ((u2" I7) 0, 0) 0, we

obtain

(39) ll[Tu 12- ((u. g)u, Ul) (agO, u),

In view of the assumption (A3) and Lemma 2.2,
we have from (39)

<_ 3 c ;Tu . u 113 + 3c2c g I[ II. u II.
If V’u 4: O, then the above inequality implies

On the other hand, we have by (40)
<43>

3 u II II, o Ila + 3 u II I. Ila
3c II- <ll II + 0 Ila>.

if o, then we find

Substituting (44) into (42), we obtain

() 3c u I1 + (11 I1 + I1)
However, we have taken 0 in (26) such that 7-
9c g h

11 I1 , e (a)pe

(47) 1 ac II-1 I + 0 I1 + r.
Since 7(0 < 7 < 1)can be taken arbitrarily, if

1 1[3, 01113 satisfy Condition (C), then (47)

leads us a contradiction. Hence it must be that
Tu II- r’0 II- 0o Therefore we find u- const.

and 0 const. But u(F)- O(F)- O, hence
u--0 and 0--0. Thus we have proved the un-

iqueness theorem.
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