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Introduction. This is a continuation of a
series of papers [3] each of which will be refer-
red to as (I), (II) and (III) in this paper. As in (I),
we shall obtain, by the Hopf construction, a natu-
ral family of elliptic curves with canonical points
defined over a given field k of rationality. For
example, when k Q and the Hopf map h:Q--+
Q is given by h(x, y)= (x2- y2, 2xy), our
method yields the following

(0.1) Theorem. For a prime p--= 1 (mod4), let
p a + b be the unique expression of p by posi-
tive integers a, b with a odd. Let Ep be an elliptic

curve given by
(0.2) Ep" Y" X(X"- 2(1 + a"- b2)X

+ (1 + 2(a"-- b’) +
Then the point Po (1, p) is of infinite order in

E(Q).
1. Hopf construction. Let (V, q) be a

nonsingular quadratic space over a field k of
characteristic 4 2. Let
(1.1) W= {w (u, v) V 17; u, v are

independent and nonisotropic}.
To each w W, we associate an elliptic curve

Ew" Y" X / AwX" / BwX,

q(u / v) q(v- u) q(u) q(v),
Bw q(u) q(v) .l)

If we put o q(u), 19 q(v), )"-- q(v- u), we

have
(1.3) Ew: Y2: X(X2_ (o+ fl-- ?’)X + ofl),
and nonsingularity of Ew (i.e., w W) amounts
to the condition

afl(a. + fl. + ),2_ 2aft- 2fl)’- 2ra) :/: 0.
One verifies trivially that points (a, ave), (fl,
fl v)belong to Ew(k(v/)). If we want these

1) This E is a new one which is 2-isogenous to

the curve in (I), (II) written by the same notation.

Throughout this paper, we shall always mean by Ew the
new curve given by (1.2).

2) In this paper, we shall not discuss the existence

of Z* in a general setting.

3) See (I), 2, after (2.5).

points in E,o(k), we need w- (u, v) W such
that "- q(v- u) is a square in k. The Hopf
construction takes care of the matter. From now

on, we assume that V has a unit vector s, q(s)
1. Denote by U the orthogonal complement of the
line ks and by qv the restriction of q on U. Next,
let Z--X@ Y be an orthogonal direct sum de-
composition of a nonsingular quadratic space
(Z, qz) over k and qx, qY be the restrictions of
qz on X, Y, respectively. We assume further that
there is a bilinear map " X x Y--+ U such that
qv(B(x, y))- qx(x)q.(y). In this situation, we

obtain a Hopf map h" Z---+ V given by
(1.4) h(z) (qx(X) q,(y))s + 2fl(x, y),

z--x+yZ,
which satisfies the required property

(1.5) q(h(z)) (qz(z))- a square.
Finally, consider the set
(1.6) Z*-- {z-- (x, y) Z- X@ Y ;x, y,

s -t- h(z) are all nonisotropic}.2)
We know that w-- (u, v) (s, s + h(z)) be-
longs to W for all z Z* a)

Consequently, for this choice of w, we have

E" y2 Xa / AX, / BwX,
A- 2(1 + qx(X) qv(y)),
Bw 1 + 2 (qx(X) qr(y)

(1.7) -t-- (qx(X) + q,(y))2,
c- q(u) q(s) 1, fl- q(v) Bo,
7"- q(v- u) q(h(z))

(qx(X) + q,(y))2.
Furthermore, since o- 1 and "f- (qx(X) +
qY (y)) 2, we find

(1.8) the canonical point (1, qx(X) + qy(y))
belongs to E,o(k).

y2In general, for a cubic curve --X(X2+
AX + B), we denote by D the discriminant of
the polynomial on the right side" D- B2(A2-
4B). For our elliptic curve E ((1.2), (1.7)), we
have
(1.9) D- 4(1 + 2T + $2)2(T S2) with

S- qx (X) / q, (y) T- qx (X) q, (y)
2. Primes of the form x +ny. As a very
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special but an interesting example, we shall con-

sider the case k-- Q, V-Z- Q-X( Y,X
2Y Q, qx (x) x qy (y) ny n>_l, q(z)

qz(z) x -F ny z- (x, y). Let s- (1,0),
(0,1). Hence U- Q7 " Q, qu(yr]) qY(y)

ny As a bilinear form we adopt the map fl"
U defined by tg(x, y)- xyrt. One verifies that
qu(fl(x, y)) nx y qx(X)qy(y). Then the
Hopf map h" Z- Q2__, V- Q2 is given by
(2.1) h (x y) (x ny 2xy)
Note that
(2.2) + h(z) (1-kx ny 2xy).
Since q(x, y) x -9 ny, the set (1.6) boils
down to
(2.3) Z* {z-- (x y) Q ;x:/: 0, y:/: 0}.

Given an integer n_> 1, let p be a prime
52number A 2n such that p a q- n with posi-

tive integers a, b. 4) Let us set, for each n _> 1,
(2.4) E,, (p p X 2n, p a + nb2, a, b > 0}.
We know that En contains infinitely many

primes. To be more precise, let L be the ring
class field of the order Z[v/- n] in the im-
aginary quadratic field K Q(v/- n). As is

well-known, we have

(2.5) p En <:>p splits completely in L.
Since L/Q is galois of degree 2h(--n), h(--n)
being the class number of the order , the
Dirichlet density of E. is (2h(-- n)) -1.

3. Subset F, of En. We need a subset F
of the set Eu (2.4) to state a theorem in 4. As Fn

is interesting by itself, we insert here a brief
comment on it. Set

b(3 1) Fn-- (p,prime p a"+n -4a
+1, a,b>0} 6).

In case n- 1, by the uniqueness of (x, y) such
that p-- x q- y, we find a-- 1, b- 2, p- 5,
i.e., F {5}. More generally, if n is square, n
r, then one verifies again by the uniqueness for

4) If n >_ 2, the ordered pair (a, b) is uniquely de-

termined by p. (see, e.g., [2, p. 188, Theorem 101].) If
n 1, we assume that a is odd to secure the uniqueness.

5) See [1, p.181, Theorem 9.4]. [1] is an excellent
exposition on primes of the said form.

6) We agree with the convention in 4). Note that
the condition p A 2n follows automatically from (3.1).

7) By the way, one verifies easily the following

properties of F" (i) n mr F c__ F. (ii) p F
() 1. (iii)The set {p p l+x ,xZ} UFn
(disjoint union, n: squarefree).

p_ x.+ y2 that F4 {5} and F,- q5 for r_>
3. Note that, since nb"- 3a" -t- 1, we have Fn

(--3)- 1 for anyq5 unless n 1 (mod 3) and q
odd prime factor q of n. So it is enough to deter-
mine the set F. for n- 7, 13, 19, 28 For
n- 7, we find 37 f with a- 3, b- 2.
However machine computation shows that the
next smallest p e F7 (if any) should be > 10l.
On the other hand some Fn contain at least two
primes" e.g., 17, 41617 Fla, 257, 152176897

F19 and 401, 578883601 Faox. It would be
nice if one could determine the (possibly finite)
set Fn.7)

In the Table below, the smallest primes p in
Fn are shown.

1
4
7

13
19
28
31
37
76

124
127
148
193
301
433
508
547
817
973
1027
1201
1519
1657
2188
2269
2353
2977
3169
3268
3367
3997
4108
4219
5293
5419
6076
6628
9076

p a b
5
5

37
17

101
37

8101
197
101

8101
677
197
257
401
577
677
2917
4357
1297
5477
1601
8101
8837
2917

12101
3137
15877
16901
4357
17957
21317
5477

22501
7057

28901
8101
8837
12101

1
1
3
2
5
3

45
7
5

45
13
7
8

10
12
13
27
33
18
37
20
45
47
27
55
28
63
65
33
67
73
37
75
42
85
45
47
55

2
1
2
1
2
1

14
2
1
7
2
1
1
1
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4. Elliptic curves attached to p--x 4- ny
Back to the situation in 2, for an n k 1, take a

prime p in the set En (2.4). The pair (a, b) such
that p- a 4- nb is uniquely determined by p.
(see footnote 4)). For z- (a, b), we have
h(z) (w ny, 2a:y) by (2.1), z belongs to Z*
((1.6), (2.3)) and w- (t, a + h(z)) ((1,0),
(1 + a nb 2ab)) belongs to W (1.1). Since
w is determined by p, we can write E En,. In
view of (1.7), to each p En, we associate an

elliptic curve"

En," y2 X 4- ApX 4- BX,
(4.1) Ana, 2(1 + a2- rtb2),

B,- 1 + 2(a- nb) + p.
From (1.8), it follows that the point (1, p) be-
longs to En,(Q). Let D, denote the discriminant
of the cubic polynomial in (4.1). Then, by (1.9),

bwe have, with S- a +n -p, T= a
_rib 2a p,
(4.2)D- D,- 4(1 + 2T + S)2(T2- S2)

-: 4(l+2T)2T (modp2).
Since pA Tand 1 +2T= 4a2+ 1 (modp), we

have

P2IDPl (1 + 2T) Pl (4a 4- 1) 4=>

c > 0 such that (a
ba +n --4a +1.

In oher words, by (3.1), we have
(4.3) PZl On, <= P Fn.

Consider now the point Po- (1, p)
E,(Q). If Po is of finite order, then, by the
(strong) Nagell-Lutz theorem ([4, p.56, p.62]), p
divides Dn,, and hence p belongs to F by (4.3).
Summarizing our argument, we obtain

(4.4) Theorem. For a positive integer n, let En,

Fn be sets of primes defined by

E {p p X 2n, p a + nb2},
F,- {p p- a + nb2- 4a2+ 1},

where a, b are positive integers. For p E the
point Po (1, p) lies on the elliptic curve

2)E," y2_x3_2(1+ a nb X
+ (1 + 2(a2- nb2) 4- p2)X.

If Po is a torsion point, then p belongs to Fn.
(4.5) Remark. If F--b, e.g. if n i (rood
3), then (1, p) is of infinite order for all p En.
In view of comment after (2.4) we get in this way
a natural family of elliptic curves of positive
rank parametrized by a set of primes of density

> 0. Next, let n 1. We know that F {5}, so

for all p > 13, p 1 (rood4), the point Po=
(1, p) is of infinite order. As for p 5, however,
we have El,5" y2_ X 4- 4X 4- 20X. Since the
torsion subgroup of EI,(Q) is of order 2, Po
(1,5) is of infinite order, too. Therefore (0.1) is

proved.
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8) Note first that c _< 3. Then eliminate cases c
2,3 by taking mod 2, mod 3, respectively.


