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Abstraet

Every normal surface singularity has a unique minimal resolution. On the

contrary, a minimal terminalization of higher dimensional singularity is not unique. In this
note, we prove that there exists a correspondence between minimal terminalizations of a
toric canonical singularity and radicals of initial ideals of term order represented by weight

vector.

1. Introduction. Every mnormal surface
singularity has a uniquely determined good re-
solution called minimal resolution, which plays
an inportant role in the studying of surface sing-
ularities. For singularities of higher dimension,
Minimal Model Conjecture tells us that there
should exist a minimal terminalization.

Definition. A minimal terminalization of a
germ of singularities X is a projective birational
morphism 7 : Y— X which satisfies the following
two conditions:

(1) Y has only Q-factorial terminal singular-

ities.

2) Ky ~ 1Ky + X a,E,, a,<0.

We say that w is a minimal resolution or a
minimal Q-factorization if Y is smooth or has
only @-factorial canonical singularities, respec-
tively.

It is known that three dimensional singular-
ities and toric singularities have a minimal termi-
nalization. Minimal terminalizations have many
nice properties like as minimal resolutions of
surface singularities. In dimension three or high-
er, however, a minimal terminalization is not uni-
que. In this note, we prove that there exists a
correspondence between minimal terminalizations
of a toric canonical singularity and radicals of in-
itial ideals of term order represented by weight
vector.

Definition. Let R = Clx,, - * ', x,] be a
polynomial ring in # variables. Fix w = (w,,* " -,
w,) € R”. For any polynomial f = X ¢,x“, we
define the initial form in,(f) to be the sum of all
terms such that the inner product w * «; is max-
imal. The initial tdeal attached to a given ideal [
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is defined to be the ideal generated by all the ini-
tial forms:
in,(I) := <in,(f): f € I.

We notice that this ideal is not necessarily
to be a monomial ideal.

Our main theorem is the following.

Theorem 1. Let X be a d-dimensional toric
singularity. Then there exists an
homogeneous binomial ideal I of Clx,, - - -, x,]
which satisfies the following four conditions:

(1) The ideal I defines the toric variety defined

by the dual fan of the defining of X .

(2) There exists a omne-to-one correspondence
between the minimal Q-factorizations and
the radicals of initial ideals of weight w in
I such that Rad(in,(I)) is a monomial
ideal.

(3) Rad(in,(I)) corresponds to the minimal
terminalization of and only if Rad(in, ([))
does not contain (1 < ¢ < n).

(4) If X is a Gorenstein canonical singularity,
Rad(in, (1)) corresponds to the minimal
resolution if and only if Rad(in,(I)) =
in, (I).

2. Proof of theorem. Let X = SpecClo”

N M]. Assume that the cone ¢ is generated by
a,,* ', a,. Because X has only canonical sing-
ularity, by [5, 1.11], there exists a linear function
h such that k(a) = (1 < i < m) and k(b)) = »
for b € 0 N N, where 7 is a positive integer. Let
A be a d — 1-dimensional integral polygon such
that

canonical

A:={r<€o|hx) = 1.
We define a regular triangulation of integral
polytope.

Definition. Let A be a d — 1-dimensional



No. 6]

integral polytope and lattice points 4 N N =
{a,, - -, a,}. Every sufficiently generic vector
o= (w, ", w,) €R" defines a triangulation
A,as follows: a subset {7;,- -+, 7,} is a face of 4,
if there exists a vector ¢ € R’ such that

a;,-c= w;ifj € {i,, -+, i,} and

a;-c<wifj€ {1, -, n\ i, -, i}

A triangulation of 4 is called a regular trian-
gulation if it coincides with 4, for some w € R”".

Lemma 1. (1) There exists a one-to-one cor-
respondence between minimal Q-factorizations and
regular triangulations of A.

(2) A vegular triangulation A, corresponds to
the minimal terminalization if and only if every lat-
tice point in A N N forms a one dimensional face of

A

o

(3) If X is a Gorenstein singularity, a regular
triangulation 4, corvesponds to the minimal resolu-
tion tf and only if every maximal simplex has
volume one.

Proof. First we prove that a minimal @-
factorization of X is a toric variety. Let w: Y —
X be a minimal @Q-factorization, D a m-very-
ample divisor on Y and Y’ a toric minimal termi-
nalization of X. There exists the proper trans-
form D’ of D on Y’ because Y’ is birational to Y
and has only terminal singularities. By Matsuki
[2, Theorem 5.1, 5.2], after taking a finite sequ-
ence of D’-flops we can obtain a toric minimal
terminalization 7”7 :Y” — X and the 7”-nef and
7”-big divisor D” which is the proper transform
of D’. A linear system mD” determines a bira-
tional morphism v:Y”— Y by Base Point Free
Theorem [1, Theorem 3-1-1]. Then v is a toric
morphism by [5, Corollary 1.7], and Y is a toric
variety.

Thus there exists a one-to-one correspond-
ence between minimal @Q-factorizations 7w :Y— X
and cone decompositions of 0. From the definition
of a minimal @Q-factorization

(1) Ky ~ n7Ky,

(2) Y has only Q-factorial singularities,
the corresponding cone decomposition must come
from a triangulation of 4 by [4, 1.11]. We check
the projectivity of w. Assume that 0 = U g, is a
cone decomposition attached to a regular trian-
gulation 4,. Let a,, ', a; be one dimensional
generators of a cone 0,  From the definition of a
regular decomposition, there exists a vector ¢; €
R? such that
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a;, - ¢, =w;ifj € {i;,---, 1,} and

a;cc; < aw;ifj€ {1, -, n}\ i, -, i}.
We define a piecewise linear function %2 on 0 =
Uag, as

h(x) =x- ¢, x € o,

Then £ is a strictly convex function, and hence 7
is a projective morphism. On the contrary, if 7 :
Y— X is a projective morphism, there exists a
strictly convex piecewise linear function Ah. Let
w = (h(a), -+, ha,)). A triangulation of 4
corresponding to a cone decomposition of ¢ is a
regular triangulation A, because A is strictly
convex. This complete the proof of (1). The
second statement follows from [4,1.11] and (1).

If X is a Gorenstein canonical singularity,
there exists a linear function % such that a(zx) =
1 for every one dimensional generator x of ¢ and
we can take 4 = {r € ¢| h(x) = 1}. Thus we
obtain (3). ]

Remark. Oda and Park proved in [3] that
there exists an one to one correspondence be-
tween toric minimal @Q-factorizations and cham-
bers of seconday fan.

The following lemma describes a relation be-
tween regular triangulations and the radicals of
initial ideals. This result was essentially obtained
by Strumfels ([Theorem 8.3, Corollary 8.4, and
Corollary 8.9], [4]). We modifies the statement
and the proof of Strumfels for our purpose. The
following statement and proof are an arrange-
ment of Strumfels’s proofs for our purpose.

Lemma 2. Let ¢t be a semigroup homomorph-
ism

u:N'"—Z° u= (u, -, un)— ua,

+ - +u,a,.
Let I denote a kernel of a ring homomorphism
p :Clxy,- -, x,] — CIlt, -, 51, x,— t".
Then the ideal I defines the toric variety defined by
the dual fan of the defining fan of X and satisfies
the following three conditions:

(1) There exists a one-to-omne correspondence

between regular triangulations 4, of A and
the radicals of initial ideals Rad(in, (1))
such that Rad(in,(I))
ideal.

(2) Rad(in,(I)) corresponds to the regular

triangulation such that every lattice points
m A N N forms a one dimensional face of
A, if and only if Rad(in,(I)) does not
contain x;(1 < 1 < n).

i1s a monomial
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(3) If X is a Gorvenstein singularity, Rad(in,(I))
corvesponds to the vegular triangulation
such that every wmaximal simplex has
volume one if and only if Rad(in, (1)) =
in, (I).
Proof. Fix a regular triangulation 4, of A.
Let w be an z-dimensional vector such that 4,
= A,. We prove that
(1) =" € Rad(in,(I)) if and only if supp(u)
is not a face of 4,,.
Let £“ be a monomial and g(#) = b. Then there
exists a cone 0, which contains . We can write
(2) b= % na,
N, 20if i€ {i, -+, i}
n,=0ifie {1, -, n}\ {i, -, i},

where the a; (1 <£j=<d) are one dimensional
generators of 0;. From the definition of a regular
triangulation, there exists a d-dimensional vector
¢, such that

a;¢; = w;ifj € {i,, -, i;} and

a;c ;< w;ifj {1, -, nt\ i, -, i},
where w = (w,,"**, w,). Then

u-w=2uw,=2ula - c)=

= 2n.a; - ¢,

and the equality holds if and only if # = 7 or,
equivalently, supp(u) is a face of A4,. Thus if
supp(#) is not a face of A4, there exists an
element ™ — 2™ of I for a suitable multiple
of p and in,(x™ — ™) = 2™ Hence z“ €
Rad(in, (7)), which checks Condition (1). Since
the ideal I is generated by binomials x* — x"

b-c

U
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such that p(#) = p(w), Rad(in,(I)) is a mono-
mial ideal in view of Condition (1). The proof of
(1) is now completed. The second statement im-
mediately follows from Lemma 1 (2) and Condi-
tion (1).

By [4, Corollary 8.9], every maximal simplex
of 4, has volume one if and only if every gener-
ator of in, (I) is square free, which implies (3). []

Theorem clearly follows from Lemma 1 and
2. Q.ED.
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