On Hasse Principle for $x^n = a$

By Takashi ONO*) and Tomohide TERASOMA **)

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1997)

Introduction. Let k be a number field, a a nonzero number in k and n an integer > 1. By the Hasse principle for $x^n = a$ we mean of course the following

(0.1) **Theorem.** The equation $x^n = a$ has a solution x in k if and only if it has a solution x_n in k_n for every place v of k.

In view of the isomorphism

(0.2) $k^{\times}/k^{\times n} \cong H^1(k, \mu_n)$, (similarly for k_v),

(0.1) is equivalent to the vanishing of the Shafarevich-Tate group:

(0.3) III $(k, \mu_n) = \operatorname{Ker} \{H^1(k, \mu_n) \rightarrow$ $\Pi_{V}H^{1}(k_{V}, \mu_{n})\} = 0.$

Let E = (E, 0) be an elliptic curve over k. Then we have

 $(0.4) \quad \text{Aut } (E) \cong \mu_n,$ n = 2, 4 or 6.

From (0.2) and (0.4), it follows that

(0.5) Twist $(E/k) = H^1(k, \text{Aut }(E)) \cong k^{\times}/k^{\times n}$ (similarly for k_v). Since, up to \bar{k} -isomorphisms, elliptic curves are in one-to-one correspondence with invariants $j(E) \in k$, (0.3) and (0.5) imply the following Hasse principle for elliptic curves over k.

(0.6) Corollary to (0.1). Let E, E' be elliptic curves over k. Then $E \cong E'$ over k if and only if E $\cong E'$ over k_v for all v.

(0.7) Comments. Theorem 1 on p. 96 of [1] involving a finite set S of primes in k contains our (0.1) as a special case. The "S-version" of (0.1)goes like this. Let S be a finite set of places of kincluding all archimedean places but excluding some prime factor in k of each prime factor of n. Then $x^n = a$ has a solution in k if it has a solution in k_b for every $p \notin S$. Although (0.1) is a special case of the theorem quoted above, we submit this paper for publication, as our proof is somehow different from their proof.

1. Proof of (0.1)**.** As is easily seen, we

have only to prove the theorem for $n = \ell^e$, ℓ being a prime. So we assume that $n=\ell^e$ although this is really needed only at the last stage of the proof. Choose a number $b \in \bar{k}$, the algebraic closure of k, so that $b^n = a$. Let z be a primitive n^{th} root of unity. Then K = k(b, zb, $\ldots, z^{n-1}b) = k(z, b)$ is a Galois extension of k, as being the splitting field of $x^n - a \in k[x]$. For each $\sigma \in Gal(K/k)$, an ordered pair $(t, u) \in$ $\mathbf{Z}/n\mathbf{Z} \times \mathbf{Z}/n\mathbf{Z}$ is determined so that

$$\sigma z = z^t, \qquad \sigma b = z^u b.$$

Setting

$$\psi[\sigma] = \begin{pmatrix} t & u \\ 0 & 1 \end{pmatrix},$$

 $\phi[\sigma] = \left(\begin{array}{cc} t & u \\ 0 & 1 \end{array} \right),$ one obtains an injective homomorphism

$$\phi: \operatorname{Gal}(K/k) \to GL_2(\mathbf{Z}/n\mathbf{Z}).$$

Call G the image of ϕ . If we put

$$B = \left\{ \begin{pmatrix} * & * \\ 0 & 1 \end{pmatrix} \in GL_2(\mathbf{Z}/n\mathbf{Z}) \right\}, \ N = \left\{ \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \in B \right\},$$

then $G \subseteq B$ and we have

$$(1.1) G/G \cap N \hookrightarrow B/N \cong (\mathbf{Z}/n\mathbf{Z})^{\times}.$$

By the assumption in (0.1), for each p in k and each prime ρ in K lying above p, there is an i so that $z'b \in K \cap k_{\rho} \subseteq K\rho$. Let $D\rho$ be the subgroup of Gal(K/k), the decomposition group of ρ , corresponding to the intermediate field $K \cap k_{\rho}$ of K/k. Consequently,

(1.2) $D\rho$ stabilizes $z^i b$ for some $i \in \mathbb{Z}/n\mathbb{Z}$.

If, in particular, ρ is unramified for K/k, then Frob ρ , a generator of $D\rho$, stabilizes z^ib . Back to the situation (1.1), we claim that

$$(1.3) G \cap N = 1.$$

In fact, let
$$g=\begin{pmatrix}1&c\\0&1\end{pmatrix}$$
 be any element of $G\cap N$. It can also be written $g=\psi\left(\sigma\right)=\begin{pmatrix}t&u\\0&1\end{pmatrix}$,

 $\sigma \in \operatorname{Gal}(K/k)$. Comparing two matrices, we have t = 1, u = c. On the other hand, by Chebotarev theorem, one finds a prime ρ in K such that $\sigma =$ Frob ρ . In view of (1.2), there is an i so that $z^i b$ $=\sigma(z^ib)=z^{ti+u}b=z^{i+c}b$; hence c=0, and so g=1.

Now let H be the subgroup of Gal(K/k)corresponding to the field k(z), the cyclotomic subfield of K. Then, we have, by (1.3),

^{*)} Department of Mathematics, The Johns Hopkins University, U.S.A.

^{**)} Department of Mathematical Sciences, University of Tokyo.

¹⁾ As for standard facts on elliptic curves, see [2].

$$\sigma \in H \Leftrightarrow \sigma z = z \Leftrightarrow \psi \ (\sigma \) = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \in G \cap N$$

$$= 1 \Leftrightarrow \sigma = 1,$$

which implies that K=k(z). From now on, we use our assumption: $n=\ell^e$. Since ℓ is totally ramified for the n^{th} cyclotomic extension Q(z)/Q, a prime p in k which lies above ℓ is also totally ramified for the relative cyclotomic field K/k. Call ρ the prime in K above p. Then, by (1.2), the group $D_{\rho}=\operatorname{Gal}(K/k)$ stabilizes z^ib for some i;

in other words $z^i b \in k$. Q.E.D.

References

- [1] E. Artin and J. Tate: Class Field Theory. Benjamin, New York and Amsterdam, pp. 20-22 (1967).
- [2] J. H. Silverman: The Arithmetic of Elliptic Curves. Springer, Berlin and New York (1986).