On the Zeros of $\sum \boldsymbol{a}_{i} \operatorname{expg}_{i}{ }^{*)}$

By Tuen-Wai NG and Chung-Chun Yang
Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong
(Communicated by Kiyosi ITÔ, M. J. A., Sept. 12, 1997)

Abstract

We consider entire functions of the form $f=\sum a_{i} e^{g_{i}}$, where $a_{i}(\not \equiv 0), g_{i}$ are entire functions and the orders of all a_{i} are less than one. If all the zeros of f are real, then $f=e^{g} \sum a_{i} e^{h_{i}}$, where h_{i} are linear functions. Using this result, we can prove that $f=a_{1} e^{g}$ if all zeros of f are positive, which also generalizes a result obtained by A. Eremenko and L. A. Rubel.

Key words: Zero set; entire function; Borel theorem; upper half-plane; Nevanlinna theory.

1. Introduction and main results. For $i \geq$ 1 and $z \in \mathrm{C}$, let $g_{i}(z)$ be entire functions. Let $a_{i}(z)$ be a non-zero entire function with $\rho\left(a_{i}\right)$ <1, where $\rho(g)$ denotes the order of an entire function g. Let B_{1} denote the class of entire functions of the form

$$
f=\sum_{i=1}^{n} a_{i} e^{g_{i}},
$$

where $e^{g_{i}-g_{j}}$ is non-constant for $i \neq j$.
If all the a_{i} are polynomials, then such f is said to be in the class B. Clearly, B is a proper subset of B_{1}.

Let $Z(g)$ be the zero set of an entire function g. In [2], by using H. Cartan's theory of holomorphic curves. A. Eremenko and L. A. Rubel proved the following theorem.

Theorem A. Let $f \in B$. If $Z(f)$ is a subset of the positive real axis, except possibily finitely many points, then $f=p e^{g}$, where p is a polynomial and g is an entire function.

Therefore, it is natural to ask whether we can say something about the form of f if $f \in B$ and $Z(f)$ is a subset of the real axis. By adapting some of the arguments used in [6] and Nevanlinna value distribution theory for functions meromorphic in a half plane, we can answer this question even for the case $f \in B_{1}$. In fact, we obtained the following results.

Theorem 1. Let $f \in B_{1}$. If $Z(f)$ is a subset of the real axis, except possibly finite points, then

1991 Mathematics Subject Classiication. Primary 30D15.
*) The research was partially supported by a UGC grant of Hong Kong.
$f(z)=e^{g(z)} \sum_{i=1}^{n} a_{i}(z) e^{b_{i} z}$, where $b_{i} \in C, g$ and $a_{i}(\not \equiv 0)$ are entire functions with $\rho\left(a_{i}\right)<1$.

Using theorem 1, we can generalize theorem A to the following theorem.

Theorem 2. Let $f \in B_{1}$. If $Z(f)$ is a subset of the positive real axis, except possibly finite points, then $f=a e^{g}$, where g, a are entire functions with $\rho(a)<1$.

Our basic tool is J. Rossi's half-plane version of Borel theorem. J. Rossi proved this version in [6] by using Tsuji's half-plane version of Nevanlinna theory. Therefore, we shall start with the basic notations of Tsuji's theory (cf. [4] and [7]) ; assuming the readers are familiar with the Nevanlinna Theory and its basic notations (cf. [3]).

Let $n_{u}(t, \infty)$ be the number of poles of f in $\left\{z:\left|z-\frac{i t}{2}\right| \leq \frac{t}{2},|z| \geq 1\right\}$, where f is meromorphic in the open upper half-plane. Define

$$
\begin{gathered}
N_{u}(r, \infty)=N_{u}(r, f)=\int_{1}^{r} \frac{n_{u}(t, \infty)}{t^{2}} d t \\
\begin{aligned}
& m_{u}(r, \infty)=m_{u}(r, f) \\
&= \frac{1}{2 \pi} \int_{a r c s i n r^{-1}}^{\pi-a r c s i n r^{-1}} \log ^{+}\left|f\left(r \sin \theta e^{i \theta}\right)\right| \frac{d \theta}{r \sin ^{2} \theta^{2}}, \\
& N_{u}(r, a)=N_{u}\left(r, \frac{1}{f-a}\right), m_{u}(r, a) \\
&=m_{u}\left(r, \frac{1}{f-a}\right)(a \neq \infty) \text { and } \\
& T_{u}(r, f)=m_{u}(r, f)+N_{u}(r, f)
\end{aligned},
\end{gathered}
$$

Remark 1. We can also define $m_{l}(r, f)$, $N_{l}(r, f), T_{l}(r, f)$ for functions meromorphic in the open lower half-plane in the obvious way.

Lemma 1 [4]. Let f be meromorphic in Imz
$>0(<0)$. Define $m_{\alpha, \beta}(r, f)=\frac{1}{2 \pi} \int_{\alpha}^{\beta} \log ^{+}\left|f\left(r e^{i \theta}\right)\right|$ $d \theta$. Then

$$
\begin{gathered}
\quad \int_{r}^{\infty} \frac{m_{0, \pi}(t, f)}{t^{3}} d t \leq \int_{r}^{\infty} \frac{m_{u}(t, f)}{t^{2}} d t \\
\left(\int_{r}^{\infty} \frac{m_{\pi, 2 \pi}(t, f)}{t^{3}} d t \leq \int_{r}^{\infty} \frac{m_{l}(t, f)}{t^{2}} d t\right)
\end{gathered}
$$

Lemma 2 [6]. Let $n \geq 2, S=\left\{f_{0}, \ldots, f_{n}\right\}$ be a set of meromorphic functions such that any proper subset of S is linearly independent over C. If S is linearly dependent over C, then for all r except possibly on a set of finite measure,

$$
\begin{array}{r}
T_{u}(r)=O\left\{\sum_{k=0}^{n}\left[N_{u}\left(r, 1 / f_{k}\right)+N_{u}\left(r, f_{k}\right)\right]\right. \\
\left.+\log T_{u}(r)+\log r\right\}
\end{array}
$$

where $T_{u}(r)=\max \left\{T_{u}\left(r, f_{i} / f_{j}\right) \mid 0 \leq i, j \leq n\right\}$.
Remark 2. If we replace $m_{u}(r, f), N_{u}(r$, $f)$ and $T_{u}(r, f)$ by the standard Nevanlinna functionals $m(r, f), N(r, f), T(r, f)$ in Lemma 2 , we shall obtain the original full-plane version of Borel theorem.

Lemma 3 [5]. Let g_{i} be a transcendental entire function and h be a non-zero entire function such that $T(r, h)=o\left(T\left(r, g_{i}\right)\right)$ as $r \rightarrow \infty$, for 1 $\leq i \leq n$. Suppose $\sum_{i=1}^{n} g_{i}(z)=h(z)$, then $\sum_{i=1}^{n} \delta$ $\left(0, g_{i}\right) \leq n-1$.

Lemma 4. For $n \geq 2$ and each $1 \leq i \leq n$, let a_{i} denote a non-zero entire function with $\rho\left(a_{i}\right)$ <1 and b_{i} be a non-zero complex number. Then, there exists a positive constant A such that for sufficiently large $r, T\left(r, a_{1}(z)+\sum_{i=2}^{n} a_{i}(z) e^{b i z}\right) \geq$ $A r$.

The proof of Lemma 4. It is not difficult to prove for $n=2$. Assume $n \geq 3$. Let $g(z)=a_{1}(z)$ $+\sum_{i=2}^{n} a_{i}(z) e^{b_{i} z}$ and $G(z)=a_{1}(z)+\sum_{i=2}^{n-1} a_{i}(z)$ $e^{b^{t} z}$. Then $T(r, G)=O(r)$ for large r. From g $=G+a_{n} e^{b_{n} z}$ and a simple calculation give

$$
\left(a_{n} b_{n}+a_{n}^{\prime}-a_{n} G^{\prime} / G\right) e^{b_{n}^{z}}=g^{\prime}-g G^{\prime} / G
$$

It is well-known that (for large $r) T\left(r, G^{\prime} / G\right)=$ $o(T(r, G))$ and $T\left(r, g^{\prime}\right) \leq A T(B r, g)$, where $A, B \geq 1$. Hence,
$\frac{1}{\pi}\left|b_{n}\right| r \sim T\left(r, e^{b_{n} z}\right) \leq T\left(r, g^{\prime}-g G^{\prime} / G\right)+T(r$, $\left.a_{n} b_{n}+a_{n}^{\prime}-a_{n} G^{\prime} / G\right)+O(1) \leq C T(B r, g)+$ $o(r)$.
Therefore, for large $r, T(r, g) \geq A r$ for some suitable positive constant A.
2. Proofs of Theorems. The proof of Theorem 1. $f \in B_{1}$ implies that $f=\sum_{i=1}^{n} a_{i}$ $\exp g_{i}$, where $a_{i}(\not \equiv 0), g_{i}$ are entire functions with $T\left(r, a_{i}\right)=O\left(r^{\epsilon}\right)$ for some fixed positive ϵ <1.

If $n=1$, then we are done. For $n \geq 2$, suppose that $\exp \left(g_{i}-g_{j}\right)$ is non-constant for $i \neq j$. From these and using the full-plane version of Borel theorem, we can show that the functions f_{i} $=a_{i} \exp g_{i}$ are linearly independent. Set $f_{0}=f$, then the set $\left\{f_{0}, \ldots f_{n}\right\}$ will satisfies the independence criteria of Lemma 2.

Suppose that $Z(f)$ is a subset of the real axis, except possibly finite points. Then, $N_{u}(r$, $\left.1 / f_{0}\right)=O(\log r)$. For $1 \leq i \leq n$, we also have $N_{u}\left(r, 1 / f_{i}\right)=O\left(r^{\epsilon}\right)$, since
$N_{u}\left(r, 1 / f_{i}\right)=\int_{1}^{r} \frac{n_{u}\left(t, 1 / a_{i}\right)}{t^{2}} d t \leq \int_{1}^{r} \frac{n\left(t, 1 / a_{i}\right)}{t} d t$ $=N\left(r, 1 / a_{i}\right)+O(1)=O\left(r^{\epsilon}\right)$.

It follows from Lemma 2 that $T_{u}(r)=O\left(r^{\epsilon}\right)$ and hence $T_{u}\left(r, f_{i} / f_{j}\right)=O\left(r^{\epsilon}\right)$ for all i, j. Since $T_{u}\left(r, f_{i} / f_{j}\right)=N_{u}\left(r, f_{i} / f_{j}\right)+m_{u}\left(r, f_{i} / f_{j}\right)$, we also have $m_{u}\left(r, f_{i} / f_{j}\right)=O\left(r^{\epsilon}\right)$. Similarly, $m_{l}\left(r, f_{i} / f_{j}\right)$ $=O\left(r^{\epsilon}\right)$. Now,
$T\left(t, f_{j} / f_{i}\right)=N\left(t, f_{i} / f_{j}\right)+m\left(t, f_{i} / f_{j}\right)=O\left(t^{\epsilon}\right)+$

$$
m_{0, \pi}\left(t, f_{i} / f_{j}\right)+m_{\pi, 2 \pi}\left(t, f_{i} / f_{j}\right) .
$$

Then by Lemma 1, we have

$$
T\left(r, f_{i} / f_{j}\right) O\left(1 / r^{2}\right) \leq \int_{r}^{\infty} \frac{T\left(t, f_{i} / f_{j}\right)}{t^{3}} d t=O\left(r^{-\epsilon}\right)
$$

Consequently, $T\left(r, f_{i} / f_{j}\right)=O\left(r^{2-\epsilon}\right)$. This implies that the order of $\exp \left(g_{i}-g_{j}\right)$ is less than 2 and hence equal to one.

Now, $f=e^{g 1}\left(a_{1}+\sum_{i=2}^{n} a_{i} e^{g_{i}-g_{1}}\right)$, where $g_{i}-$ g_{1} is linear for $2 \leq i \leq n$. This also completes the proof.

The proof of Theorem 2. Let $f \in B_{1}$ such that $Z(f)$ is a subset of the positive real axis, possibly finite points. By Theorem 1, either (i) f $=a e^{g}$ or (ii) $f(z)=e^{g(z)}\left(a_{1}(z)+\sum_{i=2}^{n} a_{i}(z) e^{b_{i} z}\right.$, where $g, a_{i}(\not \equiv 0)$ are entire functions, $\rho\left(a_{i}\right)<1$ and the b_{i} 's are non-zero complex numbers. We only need to consider case (ii).

Let $G(z)=a_{1}(z)+\sum_{i=2}^{n} a_{i}(z) e^{b_{i} z}, h=-a_{1}$, $g_{1}=-G, g_{i}(z)=a_{i}(z) e^{b_{i} z}$ for $2 \leq i \leq n$. Then $Z(G)=Z(f), \sum_{i=1}^{n} g_{i}(z)=h(z)$, and $T(r, h)=$ $o\left(T\left(r, g_{i}\right)\right)$ as r tends to infinity for $1 \leq i \leq n$. By Lemma $3, \sum_{i=1}^{n} \delta\left(0, g_{i}\right) \leq n-1$. Since $\delta(0$, $\left.g_{i}\right)=1$ for $i \geq 2$, it follows that $\delta(0, G)=\delta(0$, $\left.g_{1}\right)=0$.

Hence there exists an unbounded sequence $\left\{r_{i}\right\}$ such that $N\left(r_{i}, 0, G\right) \geq \frac{1}{2} T\left(r_{i}, G\right)$. By Lemma 4,

$$
\int_{r_{i}}^{\infty} \frac{N(t, 0, G)}{t^{2}} d t \geq \int_{r_{i}}^{\infty} \frac{N\left(r_{i}, 0, G\right)}{t^{2}} d t
$$

$\geq \int_{r_{i}}^{\infty} \frac{1}{2} \frac{T\left(r_{i}, G\right)}{t^{2}} d t \geq \int_{r_{i}}^{\infty} \frac{1}{2} \frac{A r_{i}}{t^{2}} d t=\frac{1}{2} A>0$.
Therefore, $\int_{0}^{\infty} \frac{N(t, 0, G)}{t^{2}} d t$ does not conver age and hence the genus of G is at least one. Now, G is an entire function of finite order with a genus at least one, which has at most finitely many non-positive zeros. By a result of A. Edrei and W. Fuchs [1], $\delta(0, G)>0$, which is a contradiction. Hence f must equal to the required form, $a e^{g}$.

Remark 3. It is obvious that Theorem A can also be derived from the present arguments by assuming that the coefficients $a_{i}(z)$ are polynomials in Theorem 2.

References

[1] A. Edrei and W. H. J. Fuchs: On the growth of
meromorphic functions with several deficient values. TAMS, 93, 292-328 (1959).
[2] A. Eremenko and L. A. Rubel: On the zero sets of certain entire functions. Proc. of AMS, 124, 2401-2404 (1996).
[3] W. K. Hayman : Meromorphic Functions. Clarendon Press, Oxford (1964).
[4] B. Ja. Levin and I. V. Ostrovskii: The dependence of growth of an entire function on the distribution of the zeros of its derivatives. Amer. Math. Soc. Transl., 32, (1963).
[5] K. Nino and M. Ozawa: Deficiencies of an entire algebroid function. Kodai Math. Sem. Rep., 22, 98-113 (1970).
[6] J. Rossi: A halfplane version of a theorem of Borel. Holomorphic Functions and Moduli 1. SpringerVerlag, pp. 111-118 (1988).
[7] M. Tsuji: On Borel's directions of meromorphic functions of finite order I. Tohuku Math. J., 2, 97-112 (1950).

