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Asymptotic Behavior of Solutions of Certain Second Order
Differential Equations at Infinity
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In his work [3], the author encountered dif-
ferential equations which can be reduced to the
following form:
(1) u (t) + f(t)u(t) 0
Here, u is an unknown function and f is a given

coefficient function. In this paper, the order of
decay of u (t)as t -- oo is explicitly given in
terms of f(t).

To describe the results, we introduce a func-
tion space. For two positive numbers p and A, let
a,p,A be the totality of real-valued C-functions
f on an open interval containing I [a, oo), a

R, satisfying the following conditions:

(i) f(t) is positive and convex on I;
(ii) the inequality f(t)f" (t) < (p + 1)f" (t)

holds for t I;
(iii) for t I, f" (t) >-- Af(t).

The space of all real-valued solutions u of (1) is

denoted by I. The main result of this paper is
the following theorem.

Theorem. If the coefficient function f in (1) is
1

in the family

and A > O. Then u(t) O(f(t) -1/4) as t’- eo for
all u in

Moreover, an upper bound for lu(t)f(t)v41 can
be explicitly given (see Proposition 7).

1. Properties about zeros of a solution of
equation {1}. As a first step of our proof, we
give an estimate for solutions of (1).

Lemma 1. Let f be a function in =a,,A with 0
1p <-- and u a solution of (1). Assume that for

two real numbers c and fl (a <_ c < fl), u(o) 0
and u(t) 4:0 for c t ft. Then it holds that

0 N u’(a)-u(t) <_ f(cr)-/4f(t) -1/4

sin (fatf(s) l/2d$)
fora<_ t<_ fl.
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The following is an immediate consequence
of the definition of the family ga,P,A"

Lemma 2. (i) If O < pl < p., then
a,p.,A for all a R, A > O.
(ii) Let f be a function in a,,A, then f" (t) <_ C"
f(t) +1 for t >- a, where C f’(a)f(a) -(+1)

Let f be a function in ;a,,A and u in s].
Then, it is easily seen that u has infinitely many
zeros on the interval [a, oo). Since the set of all
zeros of u has no accumulation point, we enumer-
ate the totality of zeros of u in [a, oo) in an in-
creasing order by (cn[n 1, 2 }. Then we
have the following relations between the growth
of f(t) and the distribution of zeros of u.

Lemma 3. Let f and u be functions in
and in s respectively. Take a constant C in such a

way that if(t) <-- C’f(t)/ (V t >-o). (Such a

constant C always exists by Lemma 2.) Assume that
k > 1 be a constant and that f(t) >-- 25C[256(k2

ndt1 2] --1
for >_ to (> c ). Then f(t) >

k-Tr for any two adjacent zeros fll and fl2 of u such
that to <-

Lemma 4. Let f, u and {an} be as above.
Then,

On+l
f(t) i/dt g rc (V n) and

lim f(t) r.

f :a,,A (0 < p <) and u .Let
Since a,,A a,/a,A, we can take a constant
T > a such that f(t)f (t)-2 1/40 for t--> T.
Since we are considering the behavior of func-
tions in as t oo, we may remove finitely
many terms in {cn} and renumber them in such a
way that c _> T.

Now, define constants Co, Js and tj (J" 0,
1,...) by

Co f’ (T)f(T)
-/’

j,--[21C:f(o:lil/],
f(to) max(f(T), "Cd/40),
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f(t) C j 4- j)/40,
for j > O. Here, Ix] denotes the largest integer
not exceeding x.

Note that j > 0 and that tj’s are uniquely
determined. It is easily seen that t < t+ for all
j and lim_.ootj oo. We define sets of integers I
by I {n] t an < t+l}.

1 Lemma 5. For a function f in ,, (0 < p
<) and u , define I as above. Then, the
number of elements in I, is majorized by a constant
N- 1 + [C[SA]-], independent of u, for all j O, 1,

2. Sketch of a proof of the main result.
Lemmas i o 5 altogether prove Lemma 6 below.
Then Lemmas 1 and 6 give our theorem.

Lemma 6. Let f, u, T and {an} be as men-

tioned before the previous lemma. Then the sequence

{lu’(an) If(an)-/4} is bounded.
Sketeh of proof. By Lemma 2(ii), we can

take two constants Co and C so that f’(D Co"
f(t) a/*

and if(t) C’f(t)+ for t k T. Also by

fa.,l 1/2dsLemma 4, f(s) < for n- 1, 2,

Define j, t (j 0, 1 and I as mentioned
before Lemma 5.

Since n and n+ are adjacent zeros of u,
the signatures of u’(a,) and u’(an+) are mutual-
ly digtinct. If n I, then we obtain the following
inequality by using Lemma 1 and partial integra-
tions. In this computation, F (t) stands for

2f(s) 1/ds.

0 > u’ (an)-u’ (a+)
u’(.) tu’(.) + u"(t)

2 1 -f(.)-" AO ".f(t) sin F(O dt

_> f(%) 1/4]tan+i)e,,1/4 1
Co f(an) -1/4

sin F(%+)
5
C a

-v4 "+ (s-a/4 t) /2sin6 f( n) f( "A F(t) dt
/4 / 1 _/.

2 f(a.) f(a.+) Cof(a.) sn F(a.+)
5 Cf(an).l8

Put r u’(n)f(n) -1/4, then the above inequali-
ties imply that

-1 1 5
(2) [rn+rn 1 + f(n+)-/4CosinF(n+) +

(8P-3)/4 1/4Cf(n) ]tn+)

Since f(t,) > 2C {256 [(1 4- (j 4- j;)-:)--I

7r _> F(a,+) > r[1 + (j + jz)-]- > 7r (1 (j + jz)-’).
Combined with this estimate, the inequality (2)
gives that if n I,

rn+lrn <-- 1 + t)-1/4Co 7r(j +
5 Cf(6)-+-g

< l+-rc(j+jz)
+ C j 4- j)-,

for a positive constant C. depending onIy on f.
Lemma 5 gives a constant N independent of

each u in x3 such that ILl < N for all j. So,

Ir.r-ll (n /)is majorized by a constant as in
the following way:

=2

iI,i<

(+ (+)-

( + ( +
k=0

+ C(k + j)-).
Since 4p- 2 <- 1, this infinite product con-

verges. So, the above inequality immediately
yields the assertion of the lemma.

We note that an expression of upper bound
for lu(t)f(t) is given as follows

Prpsitin 7. Define constants T’, M, C,
N, and C by

T’ T + 2f(T) -,
M= max In(01,

C a /4 + (10 20p) (40) a-4

Ce 2 exp (CN)f(T’) af(r) -a/a.
Then, u(t)f(t)/4l MC for I 2 T"

Remark. The family a,,a is large enough
for certain applications. Put {P R[t]l
P (t) =oa with n > 0 and a. > 0}, then
we have the following facts for ,,.
(i) For any P- =o at’ , exp(P (.))
a,,a./a for sufficiently large a.
(ii) Let p be a polynomial in with deg p 2 2
and f be a smooth function in a,,a. Then, pf
a’,, for sufficiently large a’.
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(iii) Assume f a,p,A and 0 b,q,,. Then, for
every number r > q, ?of c,r,1 for sufficiently
large c.

3. Example. Take the coefficient function f
in equation (1) appropriately, then our result
gives well-known estimates for all the solutions

of Bessel’s diff,erential equation.
Here we give an example concerning our

work [3]. In that paper, we studied the embed-
dings of discrete series representations into

generalized principal series representations, for a
normal real form of a connected, simply con-

nected, complex simple Lie group of type
Such an embedding is determined by observing

the structure of the solution space of a certain
differential equations [2]. Since discrete series
representations are unitary, we are especially in-
terested in their unitary embeddings into (un-
itarily) induced representations. To determine un-
itary embeddings, we should examine some condi-
tions, for example, square integrability of func-
tions in that solution space. So, evaluation of de-
cay of solutions of differential equations is of im-

portance in this problem. In the computation of
embeddings, a differential equation reduced to
the following one has appeared:
(3) u" (t) + etu(t) O.
Let bj (j- 1, 2)be analytic functions defined
respectively by

bl(t) E (-- 1)n(n!)-2tn,

(t) N 2
(-- 1)’t’

._-
_

(n!)
and put pl (t) Pl(et) and q2(t) q2(et)
(et). Then p and p2 are linearly independent
solutions of (:3). By Remark above, we see that
out theorem is applicable for q and 9. In gives

t/4
that pj (t) O(e- ) for j-- 1, 2. Using this
estimate, we obtain in turn 31(t) O(t-/4) and

d/2(t) O(t-/4 log t) as t --Details of this work will appear elsewhere.
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