The Generalized Whittaker Functions for Several Admissible Representations of $\boldsymbol{S p}$ (2, R)

By Takuya MIYAZAKI
Graduate School of Mathematical Sciences, University of Tokyo
(Communicated by Kiyosi ITÔ, M. J. A., Sept. 12, 1997)

Introduction. We study generalized Whittaker functions attached to various types of admissible representations of the real symplectic group of rank 2 , including the large discrete series. We characterize the A-radial parts of those functions by using the differential operators introduced by Schmid. Integral expressions are given for the A-radial parts and we calculate their Mellin transforms. The results relate to the archimedean factors of Andrianov's L-functions attached to non-holomorphic automorphic representations of the symplectic group.
§1. Generalized Whittaker functions for an admissible representation. (1.1) Let $G=S p$ (2, $\boldsymbol{R})=\left\{\left.g \in S L_{4}(\boldsymbol{R})\right|^{t} g J g=J\right\}$ be the real symplectic group with split rank 2 , where $J=$ $\left(\begin{array}{cc}0 & 1_{2} \\ -1_{2} & 0\end{array}\right)$. Take the Siegel maximal parabolic subgroup P of G with Levi decomposition $P=L$ $\times N$. Its abelian unipotent radical is given by N $=\left\{n=\left.\left(\begin{array}{cc}1_{2} & T \\ 0 & 1_{2}\end{array}\right)\right|^{t} T=T \in M_{2}(\boldsymbol{R})\right\}$. Fix a unitary character η of N. It corresponds to a real 2×2 symmetric matrix $H_{\eta}=\left(\begin{array}{cc}h_{1} & h_{3} / 2 \\ h_{3} / 2 & h_{2}\end{array}\right)$ and we assume this is non-degenerate. Also take a character χ of the identity component $S O(\eta)$ of the stabilizer subgroup of η in L, where L acts on the character group \hat{N} by the action induced from the action of L on N. By the definitions we can make a well defined character $\chi \cdot \eta$ of the group $R=S O(\eta) \ltimes N$ by multiplying the values of both characters. Then we define a C^{∞}-induced representation $\operatorname{Ind}_{R}^{G}(\chi \cdot \eta)=\left\{f: G \rightarrow \boldsymbol{C} \mid C^{\infty}, f\right.$ $(r g)=\chi \cdot \eta(r) f(g), r \in R, g \in G\}$ with right G-translation. This is called a reduced generalized Gelfand-Graev representation of G, [7] and [8].

Fix K a maximal compact subgroup of $G ; K$ $\simeq U(2)$. Write $\mathfrak{g}_{0}, \mathfrak{f}_{0}$ the Lie algebras of G, K, and $\mathfrak{g}=\mathfrak{g}_{0} \otimes_{\boldsymbol{R}} \boldsymbol{C}$. Given an admissible (\mathfrak{g}, K)
-module $\left(\pi, H_{\pi}\right)$ we define the following space.
(1.2) Definition. We call $W_{\chi . \eta}(\pi):=$ $\operatorname{Hom}_{(\mathrm{g}, K)}\left(H_{\pi}, \operatorname{Ind}_{R}^{G}(\chi \cdot \eta)\right)$ the space of algebraic generalized Whittaker functions for $\left(\pi, H_{\pi}\right)$.
(1.3) For a functional $\Phi \in W_{\chi . \eta}(\pi)$, we consider its restriction to a K-type occurring in $\left.\pi\right|_{\mathrm{K}}$; for an embedding $\iota: V_{\tau} \rightarrow H_{\pi},\left(\tau, V_{\tau}\right) \in \hat{K}$, we study the function $\iota^{*} \Phi(v)(g)=\left\langle v, \phi_{\pi, \tau}\right.$ $(g)\rangle_{\mathrm{K}}$, with the canonical pairing $\langle,\rangle_{\mathrm{K}}$ on $V_{\tau} \times$ $V_{\tau^{*}}, \tau^{*}$ the contragradient to τ. We call the $V_{\tau^{*}-\text { valued function }} \phi_{\pi, \tau}$ on G a generalized Whittaker function with K-type $\left(\tau, V_{\tau}\right)$ for the admissible representation π.
§2. Shift operators. (2.1) Let $\mathfrak{g}_{0}=\mathfrak{f}_{0} \oplus \mathfrak{p}_{0}$ be the Cartan decomposition, then K acts on $\mathfrak{p}=$ $\mathfrak{p}_{0} \otimes_{\boldsymbol{R}} \boldsymbol{C}$ by adjoint, $A d_{\mathfrak{p}}$. For an irreducible representation $\left(\tau, V_{\tau}\right.$) of K, define $C^{\infty}(G ; \tau)=\{f$: $G \rightarrow \boldsymbol{C} \mid C^{\infty}, f(g k)=\tau\left(k^{-1}\right) f(g), k \in K, g \in$ $G\}$. Take an orthonormal basis $\left(X_{i}\right)_{i \in I}$ of \mathfrak{p}_{0} with respect to the Killing form. Then Schmid introduced the following right K-equivariant operator ∇.
(2.2) Definition. Define $\nabla: C^{\infty}(G ; \tau) \rightarrow C^{\infty}(G$; $\tau \otimes A d_{\mathfrak{p}}$) by $\nabla \phi(g)=\sum_{i \in I} R_{X_{i}} \phi(g) \otimes X_{i}, \phi \in$ $C^{\infty}(G ; \tau)$, where $R_{X_{i}}(\cdot)$ denotes the left invariant differential. This is equivariant to the right K-actions. Corresponding to the irreducible decomposition $A d_{\mathfrak{p}} \simeq A d_{\mathfrak{p}_{+}} \oplus A d_{\mathfrak{p}_{-}}, \nabla$ is devided into a $\operatorname{sum} \nabla=\nabla^{+}+\nabla^{-}$.
(2.3) Parameterizing the set $\hat{K}_{\boldsymbol{C}}$ by the dominant integral highest weights $\left\{\left(\lambda_{1}, \lambda_{2}\right) \in \boldsymbol{Z}^{2} ; \lambda_{1} \geq\right.$ $\left.\lambda_{2}\right\}$, the irreducible representation $A d_{p_{+}}$(resp. $A d_{\mathfrak{p}_{-}}$) has the highest weight (2.0) (resp. ($0,-2$)). If a representation τ_{λ} has the highest weight $\lambda=$ $\left(\lambda_{1}, \lambda_{2}\right)$, then the tensor representation $\tau_{\lambda} \otimes$ $A d_{\mathfrak{p}_{+}}$decomposes into irreducible components as $\tau_{\lambda+(2,0)} \oplus \tau_{\lambda+(1,1)} \oplus \tau_{\lambda+(0,2)}$ (some components possibly vanish). $\tau_{\lambda} \otimes A d_{\mathfrak{p}_{-}}$has a similar decomposition. We consider a composition of $\nabla^{ \pm}$and the projection onto the each component. We call these composite operators the shift operators.
(2.4) A-radial parts. The group G has a decomposition $G=R A K$, where the split subgroup A is defined by $A=\left\{\operatorname{diag}\left(a_{1}, a_{2}, a_{1}^{-1}, a_{2}^{-1}\right) ; a_{i}>0\right\}$. For a generalized Whittaker function $\phi_{\pi, \tau}$ satisfies $\phi_{\pi, \tau}(r g k)=\chi \cdot \eta(r) \tau^{*}\left(k^{-1}\right) \phi_{\pi, \tau}(g), r \in R, g$ $\in G, k \in K$, it is determined by its values on A. Hence we want to characterize $\left.\phi_{\pi, \tau}\right|_{A} \in C^{\infty}(A) \otimes$ $V_{\tau^{*}}$ by the shift operators.
§3. Generalized principal series representations and large discrete series representations. (3.1) A generalized principal representation induced from a maximal parabolic subgroup. Let P_{1} be the standard maximal parabolic subgroup of G corresponding to the long simple root. It has the Levi decomposition $P_{1}=M_{1} A_{1} N_{1} ; M_{1} \simeq\{ \pm 1\}$ $\times S L(2, \boldsymbol{R}), A_{1}=\left\{\operatorname{diag}\left(a, 1, a^{-1}, 1\right) ; a>0\right\}$, and the unipotent radical N_{1} is the 2 -step nilpotent group. Take a representation of M_{1} consisting of a pair $\sigma=(\varepsilon, D)$, where ε is the trivial or the sign character and D a discrete series representation of $S L(2, \boldsymbol{R})$. Also for $\nu_{1} \in \mathfrak{a}_{1}^{*} \boldsymbol{C}$ we make a character $\exp \left(\nu_{1}\right): A_{1} \rightarrow C^{*}$. From these we define a generalized principal series representation $\pi=I\left(P_{1} ; \sigma, \nu_{1}\right)$ as the induced representation $\operatorname{Ind}_{P_{1}}^{G}\left(\sigma \otimes\left(\nu_{1}+\rho_{1}\right)\right)$ from P_{1} to G ([Kn], Chap. 7, $\S 1$). Here ρ_{1} is the half sum of positive roots in $\mathfrak{n}_{1}=$ Lie N_{1}.

The Frobenius reciprocity gives the K-type decomposition of this representation. Denote $\gamma_{2 e_{1}}$ $=\operatorname{diag}(-1,1,-1,1) \in M_{1}$ and $D_{k}^{+}\left(\right.$resp. $\left.D_{k}^{-}\right)$ the holomorphic (resp. anti-holomorphic) discrete series representation of $S L(2, \boldsymbol{R})$ with Blattner parameter $k>0$ (resp. $k<0$). We set $\operatorname{sgn}\left(D_{k}^{+}\right)$ $=+1, \operatorname{sgn}\left(D_{k}^{-}\right)=-1$.
(3.2) Proposition. Let $\pi=I\left(P_{1} ; \sigma, \nu_{1}\right), \sigma=(\varepsilon$, $\left.D_{k}^{ \pm}\right), \nu_{1} \in \mathfrak{a}_{1}^{*} C$, be a generalized principal series representation of G induced from P_{1}. Then the irreducible representation $\tau_{\lambda_{1}, \lambda_{2}}$ of K occurs in the restriction $\left.\pi\right|_{K}$ to K with multiplicity

$$
\left.\begin{array}{rl}
{\left[\pi: \tau_{\lambda_{1}, \lambda_{2}}\right]=\#} & \{m \in \boldsymbol{Z} \mid \\
m & \equiv k(\bmod 2), \operatorname{sgn}\left(D_{k}^{ \pm}\right) \cdot(m-k) \geq 0, \\
& (-1)^{\lambda_{1}+\lambda_{2}-m}=\varepsilon\left(\gamma_{2 e_{1}}\right), \lambda_{2} \leq m \leq \lambda_{1}
\end{array}\right\} .
$$

(3.3) Large discrete series representations of G. Take a compact Cartan subalgebra \mathfrak{h} in \mathfrak{g} and consider root system $\sum(\mathfrak{g}, \mathfrak{h})$. Writing e_{1}, e_{2} bases of \mathfrak{h}^{*}, we have $\sum(\mathfrak{g}, \mathfrak{h})=\left\{ \pm e_{1} \pm e_{2}\right.$, \pm $\left.2 e_{1}, \pm 2 e_{2}\right\}$. If we fix $\left\{e_{1}-e_{2}\right\}=\Sigma_{c}^{+}$, a compact positive root, then there are $4=\mid W(\mathfrak{g}$, $\mathfrak{h}) / W(\mathfrak{f}, \mathfrak{h}) \mid$ choices of positive systems of $\sum(\mathfrak{g}$,
\mathfrak{h}) compatible with it. One is $\sum_{I I}^{+}=\left\{e_{1}+e_{2}\right.$, $\left.2 e_{1}, e_{1}-e_{2},-2 e_{2}\right\}$. Then we can attach a discrete series representation of G, π_{Λ}, to a dominant weight Λ with respect to $\sum_{I I}^{+}$. The form Λ is called the Harish-Chandra parameter of π_{Λ}. We call discrete series representations whose Harish-Chandra parameters are dominant to $\Sigma_{I I}^{+}$, the large ones (these make a part of the set of all discrete series representations of G).
(3.4) Let π_{Λ} be a large discrete series representation of G. The K-types of it are known by Blattner formula. For the representation π_{Λ} we can attach the Blattner parameter $\lambda=\left(\Lambda_{1}+1\right) e_{1}+$ $\Lambda_{2} e_{2}$. Then the discrete series π_{Λ} has the minimal K-type $\tau_{\lambda}=\tau_{\left(\Lambda_{1}+1, \Lambda_{2}\right)}$ with multiplicity one, and the other possible K-types have the highest weights of the form $\lambda+m_{1}\left(e_{1}+e_{2}\right)+m_{2}\left(2 e_{1}\right)$ $+m_{3}\left(-2 e_{2}\right)$ with $m_{1}, m_{2}, m_{3} \in \boldsymbol{Z}_{\geq 0}$ occurring with finite multiplicity.
§4. Systems of differential equations for the generalized Whittaker functions attached to admissible Harish-Chandra modules. (4.1) A generalized Whittaker function for a generalized principal series representation. After Proposition (3.2), we define the following notion.
(4.2) Definition. Let $\pi=I\left(P_{1} ; \sigma, \nu_{1}\right), \sigma=(\varepsilon$, $D_{k}^{ \pm}$) be a generalized principal series of G. We take its K-finite vectors and make an admissible (g , K)-module. The following K-type occurring in π is called the corner K-type of π,
(i) if $\varepsilon\left(\gamma_{2 e_{1}}\right)=(-1)^{k}$, the K-type $\tau_{(k, k)}$; (ii) if ε $\left(\gamma_{2 e_{1}}\right)=-(-1)^{k}$, the K-type $\tau_{(k, k-1)}$.
The corner K-type occurs in π with multiplicity one. We call the case (i) (resp. the case (ii)) the even (resp. the odd) case in the followings.
(4.3) A realization of an irreducible representation of K. We have an isomorphism of \mathfrak{t} to $\mathfrak{u}(2) \otimes \boldsymbol{C}$. A basis of $\mathfrak{u}(2) \otimes \boldsymbol{C}$ given by $Z=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, $H^{\prime}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), X=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), \bar{X}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. Let $\left(\tau_{\lambda}, \mathrm{V}_{\lambda}\right)$ be a representation of K.
(4.4) Lemma. We have a basis $\left\{v_{j}^{\lambda} \mid 0 \leq j \leq d=\right.$ $\left.\lambda_{1}-\lambda_{2}\right\}$ of V_{λ} such that the representation can be given by $\tau_{\lambda}(Z) v_{j}^{\lambda}=\left(\lambda_{1}+\lambda_{2}\right) v_{j}^{\lambda}, \tau_{\lambda}\left(H^{\prime}\right) v_{j}^{\lambda}=(2 j$ $-d) v_{j}^{\lambda}, \tau_{\lambda}(X) v_{j}^{\lambda}=(j+1) v_{j+1}^{\lambda}, \tau_{\lambda}(\bar{X}) v_{j}^{\lambda}=(d+$ $1-j) v_{j-1}^{\lambda}$.
(4.5) We can calculate explicitly the ClebschGordan coefficients for the tensor representations
$\tau_{\lambda} \otimes A d_{\mathfrak{p}_{ \pm}}$with the above basis. Calculating the shift operators, we have the following proposition.
(4.6) Proposition. Suppose, for the character η, H_{η} is positive definite and $h_{3}=0$. Let $\lambda=(k$, k) or $(k, k-1)$ be the highest weight of the corner K-type of $\pi=I\left(P_{1}, \sigma, \nu_{1}\right)$, and $\phi_{\pi, \tau_{1}}\left(a_{1}\right.$, $\left.a_{2}\right)=\sum_{j=0}^{d} b_{j}\left(a_{1}, a_{2}\right) v_{j}^{\lambda^{*}}\left(\lambda^{*}:\right.$ the highest weight of the contragradient representation to τ_{λ}) be an A radial part of a generalized Whittaker function with the above K-type for π. Then $b_{j}\left(a_{1}, a_{2}\right)$ satisfies the following differential equations.
(i) (even case) Define $b_{0}\left(a_{1}, a_{2}\right)=\left(\sqrt{h_{1}} a_{1}\right)^{k+1}$ $\left(\sqrt{h_{2}} a_{2}\right)^{k+1} e^{-2 \pi\left(h_{1} a_{1}^{2}+h_{2} a_{2}^{2}\right)} c_{0}\left(a_{1}, a_{2}\right)$. Then the function $c_{0}(a)=c_{0}\left(a_{1}, a_{2}\right)$ has to satisfy

$$
\left(\partial_{1} \partial_{2}-\frac{h_{2} a_{2}^{2}}{\triangle} \partial_{1}+\frac{h_{1} a_{1}^{2}}{\triangle} \partial_{2}-\delta^{2}\right) c_{0}(a)
$$

$=0$, and

$$
\left\{\left(\partial_{1}+\partial_{2}\right)^{2}+2 k\left(\partial_{1}+\partial_{2}\right)-8 \pi h_{1} a_{1}^{2} \partial_{1}\right.
$$

$\left.-8 \pi h_{2} a_{2}^{2} \partial_{2}-8 \pi\left(h_{1} a_{1}^{2}+h_{2} a_{2}^{2}\right)+k^{2}-\nu_{1}^{2}\right\}$ $c_{0}(a)=0$.
(ii) $\left(\right.$ odd case) Let $b_{j}\left(a_{1}, a_{2}\right)=\left(\sqrt{h_{1}} a_{1}\right)^{k+1+j}$ $\left(\sqrt{h_{2}} a_{2}\right)^{k+2-j} e^{-2 \pi\left(h_{1} a_{1}^{2}+h_{2} a_{2}^{2}\right)} c_{j}\left(a_{1}, a_{2}\right), j=0,1$. Then $c_{j}(a)=c_{j}\left(a_{1}, a_{2}\right), j=0,1$ have to satisfy
$\rho \frac{h_{2} a_{2}^{2}}{\triangle} c_{0}(a)+\left(\partial_{2}-\frac{h_{2} a_{2}^{2}}{\triangle}\right) c_{1}(a)$
$=\left(\partial_{1}+\frac{h_{1} a_{1}^{2}}{\triangle}\right) c_{0}(a)+\rho \frac{h_{1} a_{1}^{2}}{\triangle} c_{1}(a)=0$, and $\left(\mathscr{L}+8 \pi\left(h_{1} a_{1}^{2}-h_{2} a_{2}^{2}\right)\right) c_{0}(a)$

$$
=\left(\mathscr{L}-8 \pi\left(h_{1} a_{1}^{2}-h_{2} a_{2}^{2}\right)\right) c_{1}(a)=0
$$

Here $\Delta=h_{1} a_{1}^{2}-h_{2} a_{2}^{2}, \&=\mu \frac{h_{1} a_{1} h_{2} a_{2}}{\triangle}, \rho$ $=\mu \sqrt{h_{1} h_{2}}, \mathscr{L}=\left(\partial_{1}+\partial_{2}\right)^{2}+2(k+1)\left(\partial_{1}\right.$ $\left.+\partial_{2}\right)-8 \pi h_{1} a_{1}^{2} \partial_{1}-8 \pi h_{2} a_{2}^{2} \partial_{2}-16 \pi\left(h_{1} a_{1}^{2}\right.$ $\left.+h_{2} a_{2}^{2}\right)+(k+1)^{2}-\nu_{1}^{2}$ and μ is the value of χ at $H_{\eta}^{-1}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \in \mathcal{B D}(\eta)$.
Proof. About the first equation in the even case we make a composition of 2 shift operators; from K-type $(-k,-k)$ to $(-k+2,-k)$ and from $(-k+2,-k)$ to $(-k+2,-k+$ 2). By the Proposition (3.2), we know $\tau_{-k+2,-k+2}$ does not occur in K-types of the principal series. Hence our operator has to annihilate $\phi_{\pi, \tau_{k, k}}$, and it gives the first equation. The second equation is obtained by the action of the Casimir element in $Z(g)$. The odd case is similarly calculated.
(4.7) A generalized Whittaker function for a large
discrete series representation. Take a large discrete series representation π_{Λ} of G with Harish-Chandra parameter Λ, hence with the Blattner parameter $\lambda=\left(\lambda_{1}, \lambda_{2}\right), \Lambda=\left(\lambda_{1}-1, \lambda_{2}\right)($ see (3.3), (3.4)).
(4.8) Proposition. Suppose that the matrix H_{η} is positive definite and $h_{3}=0$ for the character η. Let $\phi_{\pi_{1}, \tau_{\lambda 1, \lambda 2}}\left(a_{1}, a_{2}\right)=\sum_{j=0}^{d} b_{j}\left(a_{1}, a_{2}\right) v_{j}^{-\lambda_{2},-\lambda_{1}}$ be a generalized Whittaker function with the minimal K-type $\tau_{\lambda_{1}, \lambda_{2}}^{*}=\tau_{-\lambda_{2},-\lambda_{1}}$ attached to the large discrete series representation π_{Λ}. Then it has to satisfy the following differential equations.

$$
\begin{aligned}
& \quad\left(\mathscr{L}_{j-1}^{1}+d \frac{h_{2} a_{2}^{2}}{\triangle}\right) b_{j-1}(a)+2 \& b_{j}(a) \\
& +\left(\mathscr{L}_{j+1}^{2}-d \frac{h_{1} a_{1}^{2}}{\triangle}\right) b_{j+1}(a)=0, \text { for } 1 \leq j \leq d-1 ; \\
& \quad j \mathscr{L}_{j-1}^{1} b_{j-1}(a)-(d-2 j) \& b_{j}(a)-(d-j) \\
& \mathscr{L}_{j+1}^{2} b_{j+1}(a)=0, \text { for } 0 \leq j \leq d ; \\
& \left(\partial_{2}-4 \pi h_{2} a_{2}^{2}-2 j \frac{h_{1} a_{1}^{2}}{\triangle}+j-1+\lambda_{2}\right) b_{j-1}(a)- \\
& 2 \& b_{j}(a) \\
& +\left(\partial_{1}-4 \pi h_{1} a_{1}^{2}+2(d-j) \frac{h_{2} a_{2}^{2}}{\triangle}-j-1+\lambda_{1}\right) \\
& b_{j+1}(a)=0, \text { for } 1 \leq j \leq d-1,
\end{aligned}
$$

$$
\text { with } \mathscr{L}_{j}^{1}=\partial_{1}+4 \pi h_{1} a_{1}^{2}-(d-2 j-2) \frac{h_{2} a_{2}^{2}}{\triangle}+j
$$

$$
-\lambda_{1}, \mathscr{L}_{j}^{2}=\partial_{2}+4 \pi h_{2} a_{2}^{2}-(d-2 j+2) \frac{h_{1} a_{1}^{2}}{\triangle}-
$$

$$
j-\lambda_{2}
$$

Proof. These are obtained by calculating the shift operators which annihilate the minimal K-type vectors of π_{Λ}. The K-types of the large discrete series π_{Λ} is given in (3.4), the Blattner formula for the discrete series representation.
§5. Solutions and their Mellin transforms. (5.1) Theorem. Assume the same as in Proposition (4.6). The system of differential equations given in Proposition (4.6) are completely integrable in both cases, even or odd. There exists unique solution for each of them with the following properties. The properties: it is holomorphic at the locus $h_{1} a_{1}^{2}-h_{2} a_{2}^{2}=$ 0 and rapidly decreases when $a_{1}, a_{2} \rightarrow+\infty$. The solution can be expressed by an integral,
(i) (even case) We have

$$
\begin{aligned}
& b_{0}\left(a_{1}, a_{2}\right)=\text { const. } \times \frac{e^{-\frac{m_{0} \pi \sqrt{-1}}{2}}}{\Gamma\left(2 m_{0}+1\right)} a_{1}^{k+1} a_{2}^{k+2} \\
& \int_{0}^{\infty} t^{m_{0}} J_{m_{0}}\left(2 \pi \sqrt{-1}\left(h_{1} a_{1}^{2}-h_{2} a_{2}^{2}\right) t\right) \\
& \quad \times F\left(\frac{2-k+2 m_{0}+\nu_{1}}{2}, \frac{2-k+2 m_{0}-\nu_{1}}{2}\right. \\
& \left.2 m_{0}+1 ;-t\right) e^{-2 \pi\left(h_{1} a_{1}^{2}+h_{2} a_{2}^{2}\right)(t+1)} d t
\end{aligned}
$$

Here $m_{0}=\frac{|\mu| \sqrt{h_{1} h_{2}}}{2} \in \boldsymbol{Z}_{\geq_{0}}, J_{\nu}(z)$ is the ν-th Bessel function of the first kind and $F(a, b ; c$; z) the hypergeometric function. Taking $h_{1}=h_{2}$ $=1$ and $m_{0}=0$, then it has the following Mellin transform; $\int_{0}^{\infty} b_{0}(\sqrt{a}, \sqrt{a}) a^{s-\frac{3}{2}} \frac{d a}{a}=$ const. $\times(4 \pi)^{-s-k+\frac{1}{2}} \times \Gamma\left(s+\frac{k-1}{2}+\frac{\nu_{1}}{2}\right)$

$$
\times \Gamma\left(s+\frac{k-1}{2}-\frac{\nu_{1}}{2}\right) \times \Gamma\left(s+\frac{1}{2}\right)^{-1}
$$

where $\operatorname{Re}\left(s+\frac{k-1}{2} \pm \frac{\nu_{1}}{2}\right)>0$. If $m_{0}>$ 0 , then the transform is vanishing.
(ii) (odd case) We have
$b_{j}\left(a_{1}, a_{2}\right)=\frac{C(\sqrt{-1})^{j}}{\Gamma\left(2 m_{0}+2\right)}\left(\sqrt{h_{1}} a_{1}\right)^{k+1+j}\left(\sqrt{h_{2}} a_{2}\right)^{k+2-j}$
$\times \int_{0}^{\infty} t^{m_{0}+1}\left(J_{m_{0}} \quad\left(2 \pi \quad \sqrt{-1} \quad\left(h_{1} a_{1}^{2}-h_{2} a_{2}^{2}\right) t\right)\right.$ $\left.+(-1)^{j+1} \sqrt{-1} J_{m_{0}+1}\left(2 \pi \sqrt{-1}\left(h_{1} a_{1}^{2}-h_{2} a_{2}^{2}\right) t\right)\right)$
$\times F\left(\frac{2 m_{0}+3+\nu_{1}-k}{2}, \frac{2 m_{0}+3-\nu_{1}-k}{2} ;\right.$
$\left.2 m_{0}+2 ;-t\right) e^{-2 \pi\left(h_{1} a_{1}^{2}+h_{2} a_{2}^{2}\right)(t+1)} d t$,
for $j=0,1$. Here m_{0} is a nonnegative integer determined by $\rho^{2}=\mu^{2} h_{1} h_{2}=-\left(2 m_{0}+1\right)^{2}$, and C is a non-zero constant. Moreover, when $h_{1}=h_{2}$
$=1$ and $m_{0}=0$, we have $\int_{0}^{\infty} b_{j}(\sqrt{a}, \sqrt{a}) a^{s-\frac{3}{2}}$ $\frac{d a}{a}=$ const. $\quad \times(4 \pi)^{-s-k} \times \Gamma\left(s+\frac{k-1}{2}+\right.$ $\left.\frac{\nu_{1}}{2}\right) \times \Gamma\left(s+\frac{k-1}{2}-\frac{\nu_{1}}{2}\right) \times \Gamma(s+1)^{-1}, j=$ 0,1 for $\operatorname{Re}\left(s+\frac{k-1}{2} \pm \frac{\nu_{1}}{2}\right)>0$. They are vanishing if $m_{0}>0$.
(5.2) Theorem. The system of differential equations given in Proposition (4.8) is completely integrable. There is at most one solution which is holomorphic at $h_{1} a_{1}^{2}-h_{2} a_{2}^{2}=0$ and rapidly decreases as $a_{1}, a_{2} \rightarrow+\infty$. Also its Mellin transform has the following formula $\int_{0}^{\infty} b_{j}(\sqrt{a}, \sqrt{a}) a^{s-\frac{3}{2}} \frac{d a}{a}=C_{j}$

$$
\times(4 \pi)^{-s-\frac{\lambda_{1}+\lambda_{2}+1}{2}} \times \Gamma\left(s+\frac{\lambda_{1}-1}{2}+\frac{\lambda_{2}}{2}\right) \times
$$

$$
\Gamma\left(s+\frac{\lambda_{1}-1}{2}-\frac{\lambda_{2}}{2}\right) \times \Gamma\left(s+\frac{\lambda_{1}-\lambda_{2}+1}{2}\right)^{-1}
$$

for $\operatorname{Re}\left(s+\frac{\lambda_{1}-1}{2} \pm \frac{\lambda_{2}}{2}\right)>0,0 \leq j \leq d$. The ratio between C_{j} can be determined.
(5.3) The formulas of Mellin transforms given above relate to the archimedean factors of the Andrianov's spinor L-function attached to the automorphic representations having the representations in consideration at their archimedean place.

References

[1] A. N. Andrianov: Euler products corresponding to Siegel modular forms of genus 2. Uspekhi Math. Nauk., 29, 43-110 (1974).
[2] H. Hecht and W. Schmid: A proof of Blattner's conjecture. Invent. Math., 31, 129-154 (1975),
[3] W. Magnus, F. Oberhettinger, and R. P. Soni: Formulas and Theorems for the Special Functions of Mathematical Physics. (3rd ed.) Die Grundlehren der mathemathischen Wissenscahften., ser. 52, Springer-Verlag, pp. 65-66, 139, 296, 316317 (1966).
[4] T. Miyazaki: The generalized Whittaker functions for $S p(2, \boldsymbol{R})$ and the gamma factor of the Andrianov L-function. RIMS, 1053 (1995) (preprint).
[5] T. Oda: An explicit integral representation of Whittaker functions on $S p(2 ; \boldsymbol{R})$ for the large discrete series representations. Tôhoku Math. J., 46, 261-279 (1994).
[6] W. Schmid: On realization of the discrete series of a semisimple Lie group. Rice Univ. Studies., 56, 99-108 (1970).
[7] H. Yamashita: Finite multiplicity theorems for induced representations of semisimple Lie groups. I. J. Math. Kyoto Univ., 28, 173-211 (1988)
[8] H. Yamashita: Finite multiplicity theorems for induced representations of semisimple Lie groups. II. Applications to generalized Gelfand-Graev representations, J. Math. Kyoto Univ., 28, 383444 (1988).

