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1. Introduction. Let £ be an exterior do-
main in R® with compact smooth boundary 0£.
We consider the following system

0, + rdive =0 in [0, o) X @,
v,—adv— BV (divv) +1Vp
+wV6h=0 inl0, ) X Q,
16, — k46 + wdivo =0 in [0, ) X Q,
vl;0=0, 0l,0=0 on [0, ®) X R
(0, v, 0) (0, ) = (00, vy, 0y (x)
{ in 2,
where o is the density, v = "(v,, v,, V) the
velocity and 6 the absolute temperature, a, 71,
k£, and w are positive numbers and B is a non-
negative number. This system is the linearized
equation of motion of compressible viscous and
heat-conductive gases in an exterior domain in
R’ which was given by Matsumura and Nishida
[6] and Ponce [9]. Concerning the nonlinear prob-
lem, the unique existence of smooth solutions glo-
bally in time near constant state (g,, 0, 6,) was
studied by Matsumura and Nishida [8]. Deckel-
nick [2,3] proved the decay estimates for the
solutions of nonlinear problem although the de-
cay rate is weaker than that of Cauchy problem
given by Matsumura and Nishida [6,7] and Ponce
[9]. Our purpose is to get the decay estimates cor-
responding to Cauchy problem in the case of an
exterior domain, which will be discussed in the
forthcoming paper [5]. In our strategy, 1st step is
to get local energy decay for the solutions of
linearized equations (1.1). Kobayashi [4] proved
the local energy decay of lower order derivatives
of solutions. But since this system (1.1) is
hyperbolic-parabolic type and since the regular-
ity of solutions seems to be governed by the
hyperbolic part o, we shall need to prove the reg-
ularity of solutions. Therefore in this paper we
discuss a local energy decay estimates for higher
order derivatives of solutions for the linearized

(1.1)

equations.

Now we shall state the main results. Let 1
< g < o, m be an integer -and set

X" ={"U:Ues w"Q) x W'Q)

X WD), X,(Q) = X, (Q)

where U means the transposed U, W () =
we L, Q) :Nulypo= (Ciaiom S olosuldx)
< oo } denotes the usual Sobolev spaces and W,
() = {W)(2))°. Define the 5 X 5 matrix oper-
ator A by the relation :

0 rdiv 0
A=<7'\7 —ad —BVdiv wV >
0 wdiv — kA

with the domain:
2A) ={"U= (o, v, 0 € W, (Q) X W)
X W2 :vl,,=0, 6],, =0 on 02}.

Let P be the projection from %(A) into
{"(v,0) € W2(Q) X W2 (R); vlpo=0, 0,0 =
0 on 02} Then by Kobayashi [4], — A is a
closed linear operator in X,(£2) and the resolvent
set contain > = {1 € C: CRex + (ImA)* > 0}
where C is a constant depending only on a, 8,
T, £, and w. Moreover, the following properties
are valid; There exist positive constants A, and

o< % such that

1.2) (2l + A7 Flyo + 1 PG+ AT'F
lan < CGa, 8 | F 0

for any A — A, € X, =€ C;|largA| < 7 —
0} and any F € X, (2). This estimates means
that — A generates an analytic semigroup e
on X,(2).

Let b be a positive number such that 02 <
B, = {z € R®:|z| < b}. Set

Y (Q) ={U="(,v, 0 € X)(Q : U

= 0for z€ R\B,, [ p@dzr=0),
2

and Y, () =Y, (2 where 2,=B,N Q.
Then
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Theorem 1.1. Let 1 < g < ©© and let b, be a
fixed number such that B, > R’\ Q. Suppose that
b > b, Then the following estimates are valid; for
M = 0 integers, U € Y, (2) and t = 1

”atMe_mU"x}(gb) + ”atMPe_tAUIls.q,nb
< C(q , b , M) t_3/2_M" U”xg(g,,)-

2. Proof of Theorem 1.1. First we consid-
er the stationary linearized equation with com-
plex parameter A
21) AQ+AU=Finf, PU=0on2oaR.

Lemma 2.1. Let 1 < q < o0, Then for F €
X, (@) and A — 2, € Z,

PG+ 47 F,
A — Py + A)“Fllz,q,g < ClIFly0-

Proof. First note that it follows from (1.2)
and interpolation theorem that
(2.2) 1A + A7 Fly .0 < ClFl
forFEX(Q) and 1 — A, € 2. Let U=" (o,
v,0), F="(f, f, f,). Applying the elliptic
estimates to the system — k4 and — ad — BV
div in (2.1) it follows from (2.2) and (1.2) that

lolyo < C UA"*1Flly 0 + 1Fl )
R o A

“‘9"3,.1,9 <C {l/ﬂ HFHX (€] + HFH 1 <9>}

loleo < CAUAT AN, 0 + loll00)-

Taking A, sufficient large implies this Lemma by
these estimates. n

The following Lemma is concerned with low
frequency of resolvent (1 + A)™' near 1 = 0.
Let X and Y be Banach spaces, (X, Y) the set
of all bounded linear operators from X into Y
and & (I ; X) the set of all X-valued holomor-
phic functions in I. Then

Lemma 2.2. Let 1 < g < 0, bo be a number
such that B, < R\Q and let b > b, Put ¥ = B
(Y, , () ; D(A)). Then, there exist positive number
e and R(A) € d (D,; Y) where D, = {1 € C;
Re21_>_ 0, 0 < |A| < &} such that RQAOF = (1 +
A)_

"( ) R(/{)F'"x"’(gb) + ”(d/?) PR(;()F”2+mq.Q

< C(q, b, k, €, m)max{l, |A|"*" k}”F’me(Qb),
foramy A € D, F € Yb(Q) and k, m = 0 inte-
gers.

Proof. The results for the case m = 0 were
proved by Kobayashi [4]. When m = 1, we can
prove by employing the same argument as in
Kobayashi {4]. In fact, we shall investigate the
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parametrix which was constructed in [4]. First
we consider the following stationary equations in
R® with a complex parameter A

(2.3) A+ AU=FinR’.

By taking Fourier transform on (2.3) we obtain
[A+AE)]IU=F, where F (f) = f stand for
the Fourier transforms of f Here Aisthe5 X 5
symmetric matrix as follows:

0 &, 0
A(S) = iT&j 5jka'|§|2 + ‘BEjSk iw&j
0 1w€, xl&*

where i =+¢y—1 and 0; =0 when k# j and
=1 when k = J. SetforFEX(R)
(2.4) R,(A)F(x) (Rop(/l)F(x) R, , (D F(x),
R,, W F(@)
=F N +AGOT'FO)@.
Then we have the following estimates: Let
1< g<o,b be a positive number. Then for
YF € X" (R®) with F(x) =0 for x € R°\B,
and Y1 € D,

d d
(2.5) “ (W) kRo(/l)F”x;"(Bb) + "(H_x’) kPRo('I)F"Hm,q.Bb

< Cmax{l, |/Z|1/2_k}"F||in(R3),
where k, m = 0 are integers and C = C (e, ¢q,
b,k,m)is a constant. Moreover, for 0 < §
<1/2 and A € D,
(2.6) ”TRO(R)F" TRO(O) ﬂ'w{"*‘(sb-)xw;”*z(ab>xw;'“z(s,,)-

S C(Ey 5, q; m, b)l/ué“F'"XZ”(Ra)'
In fact, since 0502 {Rq, ,(2), Ry, (D)} F = 32(R,,
, (1), Ry (1)} OLF where la) < 2,|8] < m and

since 95 0:R,,, (D F = 8;R,, () 0-F where |a|
<1, |B] € m, it follows from the estimates (2.5)
and (2.6) with m = 0 which were proved by
Kobayashi [4] that the estimates (2.5) and (2.6)
with m = 1 hold.

Next, let G € Y., (2), and let We W
(2,) X Wr*2(Q,) x W/"**(8,) be the solution
to the problem

AW = G in 2,, PW =0 on 09,

The existence of such W is guaranteed by Cat-
tabriga [1]. In terms of W, let us define the oper-
ator L(0) by the relations:

wW=L0G={L,(00G, L,(0)G, L,(0)G}.
Here, note that by Cattagriga [1] we have the fol-
lowing estimates for any G € Y, ,(2)
@7 ILO) Glpgy + IPLO)Glyrs o,

< C(g, b)”G”x;”(Qb)’
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and L,(0) G is unique up to an additive constant.
Now, let b be a fixed constant b > R, + 3.
Choosing ¢ in C” (R®) so that ¢ (x) =1 for
|zl = 5 — 1 and = 0 if |2] < b — 2 and choosing
¢ € C5 (2,) so that [, ¢(x)dx =1, define the
operator R,(1) and S(1) by the relations: For F
€ Y,,(2) and 2 € D, U {0} ]
2.8) RWF = ¢RWF,+ (1~ LOF -+ fg

SWFdze™(1,0,0,0,0),
SWF ="{S,()F,8,WF, S,)F),
where Fy(x) = F (z) for x € 2 and = 0 for
x € R\,
SWF =20 — ¢)L,(0F + 1V ¢[R,,(DF,
- L,(0)F],
S,OF =SWF - fg S() Fdz,

S,WF =201 - QL,(0OF — aldg + 2(3,0)3)]
[R,,(D)F, — L,(0)F]
— BV {8,0[R,,(VF, — L,(0)F1)
— BV ¢{divIR,, (D) F, — L,(0) F1}
+ 1V olR, ,(DF,— L,(0)F] + wd,p

[R,,(DF, = L(O)F1, - fg S() Fdz,

Se(OF = A1 — @) L,(OF — k[ 4¢ + 20,00,][R,,
(D F, — L,(0)F]
+ w00,0[R, (D) F, — L,(0) FI,.
Since L,(0)F is unique up to additive constant,
we may choose L,(0) F in such a way that

(2.9) j;(l — o)L, (0)Fdx=j;R0,p 0)F,dx

- fn oR,,(0) Fdz.

Note that the Stokes formula and (2.9) implies
that

f,, SQ) Fdx
= zfgbu — )L, (0)dzF + fBbydivRo,u(x>Fodx
- .[) ordiviR,,()F, — L,(0) Fldz
=2 (fgb(l — ¢)L, (0)Fdx — j;bRO,p (1) F,dx

+ j; oR,, () Fyda).

It follows from (2.4), (2.5), (2.6), (2.7), (2.8), and
(2.9) that
R €dD,; ), "R(0) € B(Y,,
(Q), W) (D X Wiyoe(2) X WD),
QA+ ARWMF=QQ+SW)Fin
2, PR,()F =0 on 02,

(2.10)
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S0) € (Y, (D), X" (), SW

€ B(Y,,(Q), (W, ()} for any A € D,.
Also we have [, S, (1)Fdr =10 for 2 € D,
U {0} and
211) 1S = SO lewp @00 < C@, b, DA’
for A € D, where 0 < § < 1/2. Noting that supp
S(0)F is contained in £,, it follows from (2.11)
and Rellich’s compactness theorem that S(0) is a
compact operator from Y;,,(.Q) into itself. Since 1
+ S(0) is injective in B(Y,,(2),Y,,(2)) by
Lemma 4.6 in Kobayashi [4], by Fredholm’s
alternative theorem, 1 + S (0) € 8 (Y, (),
Y, (2)) has the bounded inverse (1 + S(0))".
Thus putting [|(1 + 8 (07 lswnwyme = M.
by (2.11), there exists an € > 0 such that 1
+ S (1) also has the bounded inverse (1 +
S()) ™! from ¥, (2) onto itself whenever A €
D, , and moreover
(2.12) (1 + 8 lsma.vman < 2M for 2 € D..
It follows from (2.5), (2.7), (2.8), and (2.10) that
for FE Y,,(2), A € D, and k = 0 integer

(2.13) ||(‘%)le (D Flpa, + II(C%)"PRI(/I)F

”m+2.q.9,, <C maX{l ’ l/zll/z_k} "F”Xz”(!)b)-

Thus putting R(Q) = R, (1)1 + S(1)) ™", com
bining (2.12) and (2.13) implies Lemma 2.2. [ |

Now we shall prove our main theorem. To
do this we prepare the following lemma, which
was proved by Shibata (see Theorems 3.2 and
3.7 of [10]).

Lemma 2.3. Let X be a Banach space with
norm |- |y. Let f(z) be a function of C” (R\ {0} :
X) such that f(z) = 0, || = a with some a > 0.
Assume that therve exists a constant C (f)
depending on f such that for any 0 < |7| < a,

D@l < COI™ ™ k=0, 1.

Put g(t) = f f(De ""dz. Then

g1y < CcA + D72C().
Let UE Y, (2),b> b, and let ¢ € Cy (R*)
such that ¢ (x) =1 for |x| < b and = 0 for
lz| > b5+ 1. Taking 7 (s) € C” (R) so that
n(s) =1 for |s| £ 1/4 and = 0 for [s| = 1/2 we
can represent the semigroup as follows (see
Kobayashi [4]):

(2.14) e tU=TJ,0U+ J. DU
where -
JOU =5 [ ™) is + A)"Uds),
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LOU =5 [ o™ = n(9)ts

+ A)”
By (1.2), (2.2), and by Lemma 2.1 we have

IDZ (1 = n () (5 ) (s + A)7'Ul, ,
<1 —n() {ll(zs +A) 7 Ul

+ |PGs + )™ 'Ul,, o}

<C (JV) (1 + ISl)_(N 1)/2"U"x1(9).
where DY = (@2,..., 32, lay| € 2, layl <3 (5

1
= 2,..., 5) and hence by the relation —'ie
12 t dA
= ¢, we have
(2.16) ID;3,/'J.HOUl, o < CN , M, &)t " |Ulyo)
for any integers N =2, M = 0. On the other

hand, noting that
a 1 X -N,— a
DEMI (WU = EZ(%)@?‘ Ve

n=0

@[ e (is)"ad;R(z’s) Uds)

it follows from Lemma 2.2 and Lemma 2.3 that
(2.17) D73/ IO Ul,g < CM , b, @)

(1 + t)—(M+3/2)”U”X1(m
for any U € Y,,(2), integer M = 0 and t>'1.
Combining (2.15), (2.16), and (2.17)
Theorem 1.1. This completes the proof.

'Uds).

(2.15)

t2

implies
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