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1. Introduction. Let Q be an exterior do-
main in R with compact smooth boundary
We consider the following system

Pt + 7divv 0 in [0, oo)
vt-aAv-flV(divv) + 7VP

+w170=0 in[0, oo) x

Ot--xAO+wdivv=O in[0, oo) x
(1.1)

v [v 0, 0[0 0 on [0, oo) x
(p, v, 0)(0, x) (po, Vo, 0o)(x)

in/2,
where p is the density, v T(V1, V2, V3) the
velocity and 0 the absolute temperature, c, 7,

c, and co are positive numbers and fl is a non-
negative number. This system is the linearized
equation of motion of compressible viscous and
heat-conductive gases in an exterior domain in
R3, which was given by Matsumura and Nishida

[6] and Ponce [9]. Concerning the nonlinear prob-
lem, the unique existence of smooth solutions glo-
bally in time near constant state (50, 0, 0o) was
studied by .Matsumura and Nishida [8]. Deckel-
nick [2,3] proved the decay estimates for the
solutions of nonlinear problem although the de-
cay rate is weaker than that of Cauchy problem
given by Matsumura and Nishida [6,7] and Ponce
[9]. Our purpose is to get the decay estimates cor-

responding to Cauchy problem in the case of an
exterior domain, which will be discussed in the
forthcoming paper [5]. In our strategy, 1st step is
to get local energy decay for the solutions of
linearized equations (1.1). Kobayashi [4] proved
the local energy decay of lower order derivatives
of solutions. But since this system (1.1) is
hyperbolic-parabolic type and since the regular-
ity of solutions seems to be governed by the
hyperbolic part p, we shall need to prove the reg-
ularity of solutions. Therefore in this paper we
discuss a local energy decay estimates for higher
order derivatives of solutions for the linearized

equations.
Now we shall state the main results. Let 1

< q < oo, m be an integer’and set

xm() {u. u wm+i (s) x w ()
wm()}, X(9) X,()

T
where U means the transposed U, W (12)=
{u L (2) [lu I[m,q,g2 (E[cr, <m f a9 I(:u ]qdx )l/q
< oo } denotes the usual Sobolev spaces and Wo
(D) {W(D)}a. Define the 5 x 5 matrix oper-
ator A by the relation"

( 0 7div 0 )A 7V aA --flVdiv coV
0 codiv A

with the domain:
f(A) (rU= (p, v, 0) Wq(f2) x Wq(39)

W:(12)’vl0o 0, 0 [oo 0 on 00}.
Let P be the projection from (A) into
{ (v,O) w,(9) x w, (9); v Io o, o[o-
0 on OQ} Then by Kobayashi [4], --A is a

closed linear operator in Xq(Q) and the resolvent
set contain {2 C:CRe2 + (Im2) > 0}
where C is a constant depending only on a, [3,
7, x, and co. Moreover, the following properties
are valid; There exist positive constants 2o and

c < such that

(1.2) 12 Ill < / A)-lFllx,(, / P(2 + A)-IF

for any 2 2o { C;[arg2[ -6} and any F X (Q). This estimates means
-tA

that --A generates an analytic semigroup e
on X(9).

Let b be a positive number such that Q

B {x Ra" Ix[ < b}. Set
Y,%() {u (o v, o) e x7() U(x)

0 forx RaBb, p(x)dx- 0},

an Y, (9) Y (9) where &- B .
Then
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Theorem 1.1. Let 1 ( q ( oo and let b be a

fixed number such that BOo RS\ [2. Suppose that
b > bo. Then the following estimates are valid" for
M >- 0 integers, U Yql, (D) and t > 1

<_ C(q, b, M) t-/-MI] U
Proof of Theorem 1.1. First we consid-

er the stationary linearized equation with com-
plex parameter
(2.1)

Lemma 2.1. Let 1

X()

Proo First note that it follows from (1.2)
and interpolation theorem that

for F Xq(D) and --7o e. Let u=T(p,
v, 0), F=T(,,f3). Applying the elliptic
estimates to the system
div in (2.1) it follows from (2.2) and (1.2) that

Taking 2o sufficient large implies this Lemma by
these estimates.

The following Lemma is concerned with low
frequency of resolvent (2 + A)-I near 2 0.
Let X and Y be Banach spaces, 3(X, Y) the set
of all bounded linear operators from X into Y
and M(I;X)the set of all X-valued holomor-
phic functions in I. Then

Lemma 2.2. Let 1 < q < oo, bo be a number
such that Boo Ra\ and let b > bo. Put /
( Yq,o () (A) Then, there exist positive number
s and R (z) sg (D /) where D (2 C;
Re, >- O, 0 < I,1 <- s} such that R(2)F (, +
A) -1F,

d(--) kR(,) Fllxr(9) + (--) kPR(,) Fl[2+m,q,9
g C(q, b, k, e, m)max(1,

for any 2 D, F yq,m (D) and k, m >_ 0 inte-
gem.

Proof. The results for the case m 0 were
proved by Kobayashi [4]. When m >_ 1, we can
prove by employing the same argument as in
Kobayashi [4]. In fact, we shall investigate the

parametrix which was constructed in [4]. First
we consider the following stationary equations in
R with a complex parameter 2
(2.3) (2 +A)U= FinR.
By taking Fourier transform on (2.3) we obtain
[/ + A ()] /O, where (f) )7 stand for
the Fourier transforms of f Here A is the 5 x 5
symmetric matrix as follows:

0

i() ir call +/3 ico
0 ico

where i=--I and j 0 when Kj and
1 when=j. SetforXq(Rs)

(2.4) Ro(2)F(x) r(Ro,o(2)F(x), R0,(2)F(x),
Ro,o(2)F(x))

-1([ + ()]-lp())(x)"
Then we have the following estimates" Let
1 < q < , b be a positive number. Then for
VF X(R3) with F(x) 0 for x RaB
and v2 D

g C max(I,
where k, m 2 0 are integers and C- C(e, q,
b, k, m)is a constant. Moreover, for 0
< 1/2 and2 D
(2.) I[rR0(2)F

<- C(e, (, q, m, b)

In fact, since O:Ox(Ro, v(2), Ro,o(2)}F 0(Ro,
(), Ro,o ()) 0F where Il 2, Ifil m and

a B a
since x zRo,o (2)F z Ro,o (2) 0xZF where

1, ]] m, it follows from the estimates (2.5)
and (2.6) with m-- 0 which were proved by
Kobayashi [4] that the estimates (2.5) and (2.6)
with m I hold.

Next, let G Yq,’($2), and let W W
(Qb) X wm+2"’q ((’b) X W2+2 (ff)b) be the solution
to the problem

AW= (7 in Q0, PW= 0 on OD0.

The existence of such W is guaranteed by Cat-
tabriga [1]. In terms of W, let us define the oper-
ator L(0) by the relations"
W L(O) G (Lp (0) G Lv(O) G, Lo(O) G}.

Here, note that by Cattagriga [1] we have the fol-
lowing estimates for any G yq,m(Q)
(2.7) IlL (0) Gllx.m(, 4- ]]PL(0) G]]m+2,q,b
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and Lo (0)G is unique up to an additive constant.
Now, let b be a fixed constant b > Ro-t-3.

Choosing qo in C (Ra) so that q)(x)= 1 for

Izl -> b- 1 and 0 if 11 <- b- 2 and choosing

C’(D so that fob(z)dx= 1, define the
operator R1(2) and S(2) by the relations: For F

yq,mo(D) and 2 D U {0}
1

(2.8) RI(/)F pRo(2)Fo + (1 p)L(O)F--Jb
S(2)Fdxor(1, 0, 0, 0, 0),

S()F =r(So(2)F, S()F, So(2)F)
where Fo(x) --F(x)for x and 0 for
x R3\t2,
S(2)F 2(1 (p)Lo(O)F + rV 9[Ro,(2)Fo

L(0)F],
So()F S(2)F- _l S()Fdx,
S(2)F 2(1 p)L(0)F- a[Aq + 2(o)]

[Ro,(2)Fo- L(0)F]
v {O[Ro,()Fo- L(0)F])

tilt o{div[Ro,(2)Fo- L(0)F]}
+ ,i7 o[Ro,,(2)Fo- Lo(0)F] +

[Ro,o(2)Fo Lo(O)F] S(2)Fdx,

So(2)F 2(1- (p)Lo(O)F [ z19 + 2OoO][Ro,o
(2) F Lo(O) F]

+ co0o[Ro,()F L(0) F].
Since Lo(0)F is unique up to additive constant,
we may choose Lo(O)F in such a way that

(2.9) Fodx
’B

fRo,o (0) Fodx.
Note that the Stokes formula and (2.9) implies
that

fbs(,) Fdx

2F (1 (p)Lo(O)dxF + ’divRo,, ( Fodx
’B

fb(PO’div[Ro,v()Fo- Lv(0)F]dx

Fodx

+ fgb@RO,o (,’) Fodx}.
It follows from (2.4), (2.5), (2.6), (2.7), (2.8), and
(2.9) that

R1(2 sd (D oy) rRl (O)
Wm+l ii]"m+2 Wm+2(9) q,loc (9) X q,loc (9) X

(2.10) (2 + A)RI(2)F (1 + S(2))F in, PRI(2)F= O on

m ms(o) (Yq,(9), Xq +(9)), s()
m(Yq,b(9) {wm+l (9)) 5),,q for any 2 D.

Also we have fgSo (2)Fdx= 0 for 2 D
U (0} and
(2.11) IlS(2) S(0)[[((9),(9)) C(q, b, 6)[21
for 2 D where 0 < < 1/2. Noting that supp
S(O)F is contained in Do, it follows from (2.11)
and Rellich’s compactness theorem that S(0) is a

compact operator from yql,(D) into itself. Since 1
+ S (0) is injective in N (Yq,o () Yq, ()) by
Lemma 4.6 in Kobayashi [4], by Fredholm’s
alternative theorem, 1 + S (0) ’N (Yq (),
Yq,o (D)) has the bounded inverse (1 + S(0))-
Thus putting ]1(1 + S (0))- II(Y(9),b()) M,
by (2.11), there exists an e > 0 such that 1
+ S ()also has the bounded inverse (1

mS (2))-1 from Yq, (D) onto itself whenever

D, and moreover
(2.12) 1(1 + S(2))- 1(5(9), (9)),, 2M for 2 D.

It follows from (2.5), (2.7), (2.8), and (2.10) that
for F Yq% (D) 2 D and k 2 0 integer

(2.13) ]l()Ri()Fllx(,)+
]]+,, g c max(l, [’-)

Thus putting R(2) R (2) (1 + S(2))-, com
bining (2.12) and (2.13) implies Lemma 2.2.

Now we shall prove our main theorem. To
do this we prepare the following lemma, which

was proved by Shibata (see Theorems 3.2 and
3.7 of [10]).

Lemma 2.3. Let X be a Banach space with

norm ]" Ix. Let f(v) be a function g C (R (0}:
X) such that f(v) O, v 2 a with some a > O.
Assume that there exists a constant C ( f)
depending on f such that for any 0 < Il g a,

()f(v)x g c(f)]v]-/- k 0 1

Put g(t) (v) e- dr. Then

Let U yql, (9), b > bo and let Co
such that (x) 1 for Ix b and 0 for
Ix[2 b + 1. Taking (s) C (R) so that
(s) 1 for Isl 1/4 and 0 for Isl 1/2 w
can represent the semigroup as follows (see
Kobayashi [4]):
(2.14) e-tU &(t)U + J=(t)U
where

1 C d -1&(b U 2t (j_=_ e’sv (s)(is + A) Uds)
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Joo(t) U 2zct( e (1 7(s))-(is
+ A) -x Uds).

By (1.2), (2.2), and by Lemma 2.1 we have

lIDS(1 r/(s))(ff--)N(is + A)-lUIq,
(2.1S)

/ liP(is + A)-u-l,q,}

O ), Ill 2, < 3 (jwhere D (0 a
1 d t2

2 5) and hence by the relation ’et2
e we have

for any integers N 2, M 0. On the other
hand, noting that

 7So(t V 1D;

it follows from Lemma 2.2 and Lemma 2. that
(2.17)

for any U Y,o(Q), integer M 0 and t 1.
Combining (2.15), (2.16), and (2.17) implies
Theorem 1.1. This completes the proof.
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