On the Polynomial Hamiltonian Structure Associated with the $L(1, g+2 ; g)$ Type

By Hiroyuki Kawamuko
Department of Mathematical Sciences, University of Tokyo
(Communicated by Kiyosi ITÔ, M. J. A., Oct. 13, 1997)

1. Introduction. In the paper [3], we considered the differential equation

$$
\begin{equation*}
\frac{d}{d x} Y=\frac{1}{x} \mathscr{A}(x, t) Y, \mathscr{A}(x, t):=\sum_{k=0}^{g+1} \mathscr{A}_{k} x^{\mathrm{k}} \tag{1.1}
\end{equation*}
$$

which satisfies the conditions:
(i) \mathscr{A}_{k} are 2×2 matrices,
(ii) the eigenvalues of \mathscr{A}_{0} are distinct up to additive integers,
(iii) the eigenvalues of \mathscr{A}_{g+1} are distinct. This equation can be reduced to the equation (1.2) $\frac{d^{2}}{d x^{2}} y+p_{1}(x, t) \frac{d}{d x} y+p_{2}(x, t) y=0$, which satisfies the three conditions:
(iv) The Riemann scheme of $(1,1)$ is

$$
\left\{\begin{array}{ccccc}
x=0 & x=\lambda_{1} & \cdots & x=\lambda_{g} \\
0 & 0 & \cdots & 0 \\
\kappa_{0} & 2 & \cdots & 2 \\
& \overbrace{\text { 0 }}^{0} \begin{array}{cccccc}
& 0 & 0 & \cdots & 0 & -\kappa_{\infty} \\
& \frac{1}{g+1} & \frac{t_{g}}{g} & \frac{t_{g-1}}{g-1} & \cdots & t_{1}
\end{array} \kappa_{\infty}-\kappa_{0}+1
\end{array}\right\},
$$

(v) κ_{0} and κ_{∞} are not integer,
(vi) $x=\lambda_{k}(k=1, \ldots, g)$ are non-logarithmic singular points.
The equation (1.2) is called $L(1, g+2 ; g)$ type.
Let $\mu_{k}(k=1, \ldots, g)$ be the residue of p_{2} (x, t) at $x=\lambda_{k}$ and let

$$
h_{j}:=\left.\frac{\partial^{g-j}}{\partial x^{g-j}}\left(x p_{2}-\sum_{k=1}^{g} \frac{\lambda_{k} \mu_{k}}{x-\lambda_{k}}\right)\right|_{x=0}
$$

By the assumtion (vi), we remark that these h_{j} are uniquely determined as rational functions in $\lambda_{k}, \mu_{k}, t_{k}(k=1, \ldots, g)$.

Using these notations λ_{k}, μ_{k} and h_{k}, we state that the holonomic deformation of the linear equation (1.2) is governed by the Hamiltonian system :

$$
\frac{\partial \lambda_{i}}{\partial t_{j}}=\frac{\partial \tilde{K}_{j}}{\partial \mu_{i}}, \frac{\partial \mu_{i}}{\partial t_{j}}=\frac{\partial \tilde{K}_{j}}{\partial \lambda_{i}}(i, j=1, \ldots, g)
$$

where the Hamiltonian \tilde{K}_{j} are

$$
\left[\begin{array}{c}
{\left[\begin{array}{c}
\tilde{K}_{1} \\
\tilde{K}_{2} \\
\vdots \\
\vdots \\
\tilde{K}_{g}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & & & & 0 \\
& 2 & & & \\
& & \ddots & & \\
& & & \ddots & \\
0 & & & g
\end{array}\right]^{-1}} \\
\\
\\
\end{array}\left[\begin{array}{ccccc}
1 & & & & 0 \\
t_{g} & 1 & & & \\
\vdots & t_{g} & 1 & & \\
t_{3} & & \ddots & \ddots & \\
t_{2} & t_{3} & \cdots & t_{g} & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
h_{1} \\
h_{2} \\
\vdots \\
\vdots \\
h_{g}
\end{array}\right] .\right.
$$

It is known that, if $g=1$ the holonomic deformation of (1.2) is governed by the fourth Painlevé equation. So the Hamiltonian system (λ, μ, $\tilde{K}, t)$ is a extension of the fourth Painlevé equation.

Now, we assume that $g<8$. The purpose of this paper is to transform the Hamiltonian system $(\lambda, \mu, \tilde{K}, t)$ into the Hamiltonian system (q, $p, H, \xi)$ with the conditions:
$\left(C_{1}\right) \quad H_{j}(j=1, \ldots, g)$ are polynomial in $q_{k}, p_{k}(k$ $=1, \ldots, g$),
$\left(C_{2}\right) \quad \frac{\partial H_{k}}{\partial \xi_{j}}=\frac{\partial H_{j}}{\partial \xi_{k}}$.
We will state that if $\kappa_{\infty}=0$, a special solution of this system is written by the multivalue Hermite function.

By the condition $\left(C_{2}\right)$, we can introduce the function $\tau_{\mathrm{IV}}^{(g)}$ as follows:

$$
\frac{\partial}{\partial \xi_{k}} \log \tau_{\mathrm{IV}}^{(g)}=H_{k}
$$

In [7], Okamoto defined the τ function associate with the fourth Painleve transcendental function. This function is equivalent to $\tau_{\mathrm{IV}}^{(1)}$.

2. Polynomial Hamiltonian structure.

Theorem 2.1. Put $\sigma_{k}, \rho_{k}(k=1, \ldots, g)$ as follows:
$\sigma_{k}=$ the k-th elementary symmetric function of $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{g}$,

$$
\rho_{k}=(-1)^{k-1} \sum_{l=1}^{g} \lambda_{l}^{g-k} \mu_{l} \prod_{\substack{j=1 \\ j \neq 1}}\left(\lambda_{l}-\lambda_{j}\right)^{-1}
$$

Then the transformation $(\lambda, \mu, \tilde{K}, t) \rightarrow(\sigma, \rho, \tilde{K}, t)$ is canonical. Moreover, the Hamiltonians $\tilde{K}_{j}(j=1$, $\ldots, g)$ are polynomial in $\sigma_{k}, \rho_{k}(k=1, \ldots, g)$.

Remark 1. Changing the variables λ_{k}, μ_{k} into the σ_{k}, ρ_{k}, the rational functions $h_{g+1-j}(j=$ $1, \ldots, g$) are expressed as follows:

$$
\begin{aligned}
& h_{g+1-j}=\sum_{r=1 s=1}^{g} \sum_{r, s}^{g} E_{r}^{(j)} \rho_{r} \rho_{s}+\sum_{k=1}^{g} F_{k}^{(j)} \rho_{k}+ \\
& (-1)^{g+j} \sigma_{g-j+1} \cdot \kappa_{\infty}, \\
& E_{r, s}^{(j)}=(-1)^{j}\left[\sum_{\alpha=0}^{\theta-j} \sigma_{\alpha} \sigma_{r+s-j-\alpha}-\sum_{\alpha=0}^{s-j} \sigma_{\alpha} \sigma_{r+s-j-\alpha}\right. \\
& \left.-\sum_{\alpha=0}^{r-j} \sigma_{\alpha} \sigma_{r+s-j-\alpha}\right], \\
& F_{k}^{(j)}=(-1)^{g-j+1}\left[\sigma_{k} \sigma_{g+1-j}+\sum_{r=1}^{g}(-1)^{\alpha=0} c_{k, r}^{g+} t_{r} \sigma_{k+r-j}\right. \\
& \left.-\sigma_{k+g+1-j}+(-1)^{g-1}\left\{\left(\kappa_{0}-1\right)+g+1-k\right\} \sigma_{k-j}\right] \text {, } \\
& c_{k, r}^{(j)}:=\left\{\begin{aligned}
+1 & (g+1 \leq k+r \leq g+j \text { and } r \geq j) \\
-1 & (j \leq k+r \leq g \text { and } r \leq j-1) \\
0 & \text { (otherwise) }
\end{aligned}\right.
\end{aligned}
$$

To state the following theorems, we prepare some notations. Let Δ_{d} be the set of all partitions of a natural number d, and $Y=\left(Y_{1}, Y_{2}, \ldots\right.$, Y_{r}) be an element of $\Delta_{d} . m_{0}(Y)$ stand for the depth of Y. For $t=1, \ldots, g, m_{l}(Y)$ stands for the multiplicity of Y i.e.

$$
m_{l}(Y)=\operatorname{Card}\left\{i \in \boldsymbol{Z} \mid Y_{i}=l\right\} .
$$

We define the polynomial $\xi_{k}(k=1, \ldots, g)$ as follows:

$$
\begin{array}{r}
\xi_{g+1-d}:=\sum_{Y \in \Delta_{d}}\left[\prod_{k=1}^{m_{0}(Y)-1}(-1)^{g}\{d-k(g+1)\}\right] \\
\left\{\prod_{k=1}^{d} \frac{1}{m_{k}(Y)!} s_{g+1-k}^{m_{k}(Y)}\right\},
\end{array}
$$

where $s_{k}=(-1)^{k-1} t_{k} / k$.
Remark 2. The following relation holds for $g<8$.

$$
\begin{aligned}
t_{g+1-d} & =\frac{(-1)^{d}}{d} \cdot \operatorname{det} M(g+1-d \\
& \left.\xi_{g}, \xi_{g-1}, \ldots, \xi_{g+1-d}\right)(d=1,2, \ldots, g)
\end{aligned}
$$

where

$$
\begin{gathered}
D_{d}:=\left[\begin{array}{ccccc}
0 & & & & 0 \\
1 & 0 & & & \\
& 1 & \ddots & & \\
& & \ddots & 0 & \\
0 & & 1 & 0
\end{array}\right], \\
M\left(c ; x_{1}, \ldots, x_{d}\right): \\
d)-\operatorname{diag}(1,2, \ldots, \\
d) \cdot D_{d}+ \\
(-1)^{g} \cdot c \cdot \sum_{j=1}^{d} j \cdot x_{j} \cdot D_{d}^{j-1}
\end{gathered}
$$

Using the above notations, the transforma-
tion $(\sigma, \rho, \tilde{K}, t) \rightarrow(q, p, H, \xi)$ is given by the following theorem.

Theorem 2.2. We assume that $g<8$. Put q_{k}, p_{k} and $H_{k}(k=1, \ldots, g)$ as follows:

$$
\begin{aligned}
& {\left[\begin{array}{c}
q_{1} \\
q_{2} \\
\vdots \\
q_{g}
\end{array}\right]=\left[\begin{array}{cccc}
\phi_{1,1} & & & 0 \\
\psi_{2,1} & \psi_{2,2} & & \\
\vdots & & \ddots & \\
\psi_{g, 1} & \cdots & \psi_{g, g-1} & \psi_{g, g}
\end{array}\right]\left[\begin{array}{c}
\sigma_{1}-\varphi_{1,0} \\
\sigma_{2}-\varphi_{2,0} \\
\vdots \\
\sigma_{g}-\varphi_{g, 0}
\end{array}\right],} \\
& {\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\vdots \\
p_{g}
\end{array}\right]=t\left[\begin{array}{cccc}
\varphi_{1,1} & & & 0 \\
\varphi_{2,1} & \varphi_{2,2} & & \\
\vdots & & \ddots & \\
\varphi_{g, 1} & \cdots & \varphi_{g, g-1} & \varphi_{g, g}
\end{array}\right]\left[\begin{array}{c}
\rho_{1} \\
\rho_{2} \\
\vdots \\
\rho_{g}
\end{array}\right],} \\
& {\left[\begin{array}{c}
H_{1} \\
H_{2} \\
\vdots \\
H_{g}
\end{array}\right]=\left[\begin{array}{cccc}
\phi_{1,1} & & & 0 \\
\psi_{2,1} & \psi_{2,2} & \ddots & \\
\vdots & & \ddots & \\
\psi_{g, 1} & \cdots & \psi_{g, g-1} & \psi_{g, g}
\end{array}\right]\left[\begin{array}{c}
\hat{h}_{1}-\kappa_{\infty} \varphi_{1,0} \\
\tilde{h}_{2}-\kappa_{\infty} \varphi_{2,0} \\
\vdots \\
\tilde{h}_{g}-\kappa_{\infty} \varphi_{g, 0}
\end{array}\right],}
\end{aligned}
$$

where $\varphi_{k, k-d}, \phi_{k, k-d}$ and \hat{h}_{j} are

$$
\varphi_{k, k}=\phi_{k, k}=1,
$$

$$
\varphi_{k, k-d}=\frac{1}{d!} \cdot \operatorname{det} M\left(g+1-k ; \xi_{g}, \xi_{g-1},\right.
$$

$$
\left.\ldots, \xi_{g+1-d}\right)
$$

$$
\varphi_{k, k-d}=\frac{1}{d!} \cdot \frac{g+1-k}{g+1-k+d} \cdot \operatorname{det}
$$

$$
\begin{array}{r}
M\left(-g-1+k-d ; \xi_{g}, \xi_{g-1}, \ldots, \xi_{g+1-d}\right) \\
(d=1, \ldots, k-1) \\
\hat{h}_{j}:=(-1)^{j-1}\left\{h_{j}+(-1)^{g-j} \sum_{k=1}^{g}(g+1\right. \\
\left.-k) \sigma_{k-g-1+j} \cdot \rho_{k}\right\} .
\end{array}
$$

Then the Hamiltonian system:

$$
\frac{\partial \lambda_{i}}{\partial t_{j}}=\frac{\partial \tilde{K}_{j}}{\partial \mu_{i}}, \frac{\partial \mu_{i}}{\partial t_{j}}=-\frac{\partial \tilde{K}_{j}}{\partial \lambda_{i}}(i, j=1, \ldots, g),
$$

is equivalent to the Hamiltonian system

$$
\frac{\partial q_{i}}{\partial \xi_{j}}=\frac{\partial H_{j}}{\partial p_{i}}, \frac{\partial p_{i}}{\partial \xi_{j}}=-\frac{\partial H_{j}}{\partial p_{i}}(i, j=1, \ldots, g) .
$$

Theorem 2.3. The Hamiltonian system (q, p, $H, \xi)$ satisfies the properties $\left(C_{1}\right)$ and $\left(C_{2}\right)$.

Remark 3. The functions $\varphi_{k, k-d}$ and $\phi_{k, k-d}$ are rewrite as follows:

$$
\begin{gathered}
\varphi_{k, k-d}=\sum_{Y \in \Lambda_{d}}\left\{(-1)^{g}(g+1-k)\right\}^{m_{0}(Y)} \prod_{k=1}^{d} \\
\frac{1}{m_{k}(Y)!} s_{g+1-k}^{m_{k}(Y)}, \\
\phi_{k, k-d}=\sum_{Y \in \Lambda_{d}}\left\{(-1)^{g-1}(g+1-k+d)\right\} \\
{ }^{m_{0}(Y)-1} \prod_{k=1}^{d} \frac{1}{m_{k}(Y)!} s_{g+1-k}^{m_{k}(Y)} .
\end{gathered}
$$

Remark 4. We assume that $g<8$. The
functions $\varphi_{k, k-d}$ and $\psi_{k, k-d}$ have the following relation:

$$
\left[\begin{array}{cccc}
\varphi_{0,0} & & & 0 \\
\varphi_{1,0} & \varphi_{1,1} & \ddots & \\
\vdots & & \ddots & \\
\varphi_{g, 1} & \cdots & \varphi_{g, \theta-1} & \varphi_{g, \theta}
\end{array}\right] \cdot\left[\begin{array}{cccc}
\psi_{0,0} & & & 0 \\
\psi_{1,0} & \psi_{1,1} & & \\
\vdots & & \ddots & \\
\psi_{g, 1} & \cdots & \psi_{g, g-1} & \psi_{g, g}
\end{array}\right]=I .
$$

Remark 5. If $g=1$, the Hamiltonian system is equivalent to the fourth Painleve equation.

It is known that the fourth Painleve equation has a special solution which is written by Hermite function. This fact is a special case of the following theorem.

Theorem 2.4. Under the assumption $\kappa_{\infty}=0$, the Hamiltonian system (q, p, H, ξ) has a special solution:
where

$$
\begin{aligned}
p_{k} & =0 \\
q_{k} & =\frac{\partial}{\partial \xi_{k}} \log u(k=1, \ldots, g),
\end{aligned}
$$

$$
u\left(t_{1}, \ldots, t_{g}\right)=\int_{r} z^{-x 0} \exp \left(-\sum_{k=1}^{g} \frac{t_{k}}{k} z^{k}-\frac{1}{g+1} z^{g+1}\right) d z .
$$

Acknowledgements. The author would like to thank Prof. T. Aoki, Prof. K. Okamoto, and Prof. K. Iwasaki who gave him valuable comments and encouraged him.

References

[1] M. Jimbo, T. Miwa, and K. Ueno: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and τ-function. Phys., 2D, 306-352 (1981).
[2] M. Jimbo and T. Miwa: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys., 2D, 407-448 (1981).
[3] H. Kawamuko: On the Holonomic deformation of linear differential equations (preprint).
[4] H. Kimura: The degeneration of the two dimensional Garniersystem and the polynomial Hamiltonian structure. Ann. Math. Pura Appl., 155, 25-74 (1989).
[5] H. Kimura and K. Okamoto: On particular solutions of the Garnier systems and the Hypergeometric functions of several variables. Quart. J. Math., 37, 61-80 (1986).
[6] K. Okamoto: On the polynomial Hamiltonian structure of the Garnier systems. J. Math. pures et appl., 63, 129-146 (1984).
[7] K. Okamoto: On the τ-function of the Painlevé equations. Phys., 2D, 525-535 (1981).

