Dirichlet Problem at Infinity for Harmonic Maps between Carnot Spaces

By Seiki NISHIKAWA^{*)} and Keisuke UENO^{**)} (Communicated by Kiyosi ITÔ, M. J. A., Nov. 12, 1997)

If M and M' are simply connected complete Riemannian manifolds of negative curvature, one can compactify them by adding the spheres at infinity ∂M and $\partial M'$, defined by the asymptotic classes of geodesic rays in M and M', respectively. Given a continuous map $f: \partial M \rightarrow \partial M'$, the Dirichlet problem at infinity consists, roughly speaking, of finding a harmonic map $u: M \rightarrow M'$ which assumes the boundary value f continuously.

The first progress toward this problem was established by Li and Tam [6], [7], [8], Gromov [9] and Akutagawa [1] around 1990, in the case that M and M' both are real hyperbolic spaces. In particular, Li and Tam proved a number of significant results concerning uniqueness, existence and boundary' regularity of solutions. Subsequently, in 1993 Donnelly [3] extended their results to the context of rank one symmetric spaces of noncompact type, namely to complex or quaternion hyperbolic spaces and the Cayley plane. Recently, Ueno [12] proved that these can be further extended to the case of Damek-Ricci spaces, which are a generalization of rank one symmetric spaces of noncompact type ([2]).

We study the problem for more general family of homogeneous spaces of negative curvature, that is, in the context of k-term Carnot spaces arising as a semidirect solvable extension of the k-step nilpotent Lie groups called Carnot groups ([13]).

More precisely, let G be a simply connected solvable Lie group satisfying the following conditions:

- 1. G is diffeomorphic to the product $\mathbf{R}_+ \times N$ of the positive real line \mathbf{R}_+ with a nilpotent Lie group N.
- 2. If \mathfrak{n} and $\mathfrak{g} = \mathbf{R} \{H\} + \mathfrak{n}$ denote the Lie algebras of N and G respectively, then \mathfrak{n}

has a graded Lie algebra structure
$$\mathfrak{n} = \sum_{i=1}^{k} \mathfrak{n}_i$$
 given, for $i = 1, \ldots, k$, by
 $\mathfrak{n}_i = \{X \in \mathfrak{n} \mid ad(H)X = iX\}.$

Then G admits a left invariant metric g of negative curvature ([5]), and we call M = (G, g)a k-term Carnot space. For example, real hyperbolic spaces are 1-term Carnot spaces, and complex or quaternion hyperbolic spaces and the Cayley plane are 2-term Carnot spaces.

We see that the realization of M as $\mathbf{R}_+ \times N$ defines a local coordinate chart at the boundary ∂M of the compactification $\overline{M} = M \cup \partial M$, and in this chart, the metric g is realized as a k-ply warped product metric

$$g = rac{dy^2}{y^2} + rac{1}{y^2}g_{\mathfrak{n}_1} + rac{1}{y^4}g_{\mathfrak{n}_2} + \cdots + rac{1}{y^{2k}}g_{\mathfrak{n}_k},$$

where y denotes the coordinate on \mathbf{R}_+ . Denoting by ∞ the point at infinity corresponding to the geodesics in the \mathbf{R}_+ direction, $\partial M \setminus \{\infty\}$ can be identified with $\{0\} \times N$. Moreover, each subspace \mathfrak{n}_i of the Lie algebra $\mathfrak{n} = \sum_{i=1}^k \mathfrak{n}_i$ of N defines by left translations a distribution on ∂M , which we denote also by \mathfrak{n}_i .

Let M and M' be k-term Carnot spaces and $u \in C^{\infty}(M, M') \cap C^{1}(\overline{M}, \overline{M'})$ a proper smooth map from M to M' which extends up to the boundary as a C^{1} map. Set $f = u | \partial M$. We say that u or f is nondegenerate if, in the coordinate charts $\mathbf{R}_{+} \times N$ and $\mathbf{R}_{+} \times N'$ at the boundaries, f satisfies k-1

$$df_{p}((\mathfrak{n}_{k})_{p}) \not\subset \sum_{j=1}^{k-1} (\mathfrak{n}_{j}')_{f(p)}$$

any $p \in N$.

at

Our first observation is that the boundary value f of a nondegenerate proper harmonic map $u \in C^{\infty}(M, M') \cap C^{k}(\overline{M}, \overline{M'})$ preserves the filtrations on the boundaries defined by distributions \mathfrak{n}_{i} and \mathfrak{n}_{i} .

Theorem 1. Let $u \in C^{\infty}(M, M') \cap C^{k}(M, M')$ be a nondegenerate proper harmonic map between k-term Carnot spaces M and M'. Then the boundary value $f = u \mid \partial M$ of u satisfies for each $1 \leq i \leq k$

^{*)} Mathematical Institute, Tohoku University.

^{**)} Department of Mathematical Sciences, Faculty of Science, Yamagata University.

No. 9]

(1)
$$df_p(\sum_{j=1}^i (\mathfrak{n}_j)_p) \subset \sum_{j=1}^i (\mathfrak{n}_j')_{f(p)}$$

at any $p \in N$.

In fact, under the assumption of Theorem 1, one can deduce the asymptotic behavior of higher order derivatives, in the \mathbf{R}_+ direction, of a nondegenerate proper harmonic map f near the boundary ∂M . In particular, we observe

Theorem 2. Let $u \in C^{\infty}(M, M') \cap C^{k}(\overline{M}, \overline{M'})$ be a nondegenerate proper harmonic map between k-term Carnot spaces M and M'. Then the asymptotic behavior in the \mathbf{R}_{+} direction of u near the boundary ∂M is determined by the boundary value $f = u | \partial M$ of u.

This leads, for instance, to the following uniqueness result of the Dirichlet problem at infinity for harmonic maps.

Theorem 3. Let $u, v \in C^{\infty}(M, M') \cap C^{k}(\overline{M}, \overline{M'})$ be nondegenerate proper harmonic maps between k-term Carnot spaces M and M'. If u and v agree on ∂M , then u = v on M everywhere.

For a given nondegenerate boundary data f satisfying the necessary condition (1), Theorem 2 also enables one to construct an asymptotically harmonic map assuming f on the boundary. Then, by applying the parabolic harmonic map equation to deform these approximate solutions to desired harmonic maps ([6]), we obtain the following existence result.

Theorem 4. Let M and M' be k-term Carnot spaces and $f \in C^{k,\varepsilon}$ $(\partial M, \partial M'), 0 < \epsilon < 1$, a nondegenerate map satisfying (1). Then there exists a harmonic map $u \in C^{\infty}(M, M') \cap C^{0}(\overline{M}, \overline{M'})$ which assumes the boundary value f continuously.

Let CH^m denote the *m*-dimensional complex hyperbolic space of holomorphic sectional curvature -1, that is, the unit ball in C^m with its Bergman metric. Then, for $m \ge 2$, CH^m is a 2-term Carnot space and the Lie algebra $n = n_1$ $+ n_2$ of the nilpotent part of the realization R_+ $\times N$ of CH^m is a Heisenberg algebra. In this case, the sphere at infinity of CH^m is identified with the unit sphere S^{2m-1} , and the necessary condition (1) for the boundary value *f* of a proper harmonic self-map *u* of CH^m means that *f*: $S^{2m-1} \to S^{2m-1}$ is a contact transformation.

It has been known that if, in particular,

 $u: CH^m \to CH^m$ is a proper holomorphic map, then u extends smoothly up to the boundary and $f = u|S^{2m-1}$ is a CR map ([4]). Conversely, we can prove the following.

Theorem 5. Let $M = CH^m$, $M' = CH^{m'}$ be the complex hyperbolic spaces of dimension $m, m' \ge 2$, respectively. Let $u \in C^{\infty}(M, M') \cap C^4(\overline{M}, \overline{M'})$ be a nondegenerate proper harmonic map and $f = u|S^{2m-1}$. If $f: S^{2m-1} \to S^{2m'-1}$ is a CR map, then u is a holomorphic map.

References

- K. Akutagawa: Harmonic diffeomorphisms of the hyperbolic plane. Trans. Amer. Math. Soc., 342, 325-342 (1994).
- [2] J. Berndt, F. Tricerri, and L. Vanhecke: Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces. Lecture Notes in Math., vol. 1598, Springer-Verlag (1995).
- [3] H. Donnelly: Dirichlet problem at infinity for harmonic maps: Rank one symmetric spaces. Trans. Amer. Math. Soc., 344, 713-735 (1994).
- [4] C. Fefferman: The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math., 26, 1-65 (1974).
- [5] E. Heintze: On homogeneous manifolds of negative curvature. Math. Ann., 211, 23-34 (1974).
- [6] P. Li and L. F. Tam: The heat equation and harmonic maps of complete manifolds. Invent. Math., 105, 1-46 (1991).
- [7] P. Li and L. F. Tam: Uniqueness and regularity of proper harmonic maps. Ann. of Math., 137, 167-201 (1993).
- [8] P. Li and L. F. Tam: Uniqueness and regularity of proper harmonic maps. II. Indiana Univ. Math. J., 42, 591-635 (1993).
- [9] M. Gromov: Foliated Plateau problem. Part II: Harmonic maps of foliations. Geom. Funct. Anal., 1, 253-320 (1991).
- [10] S. Nishikawa and K. Ueno: Complex analyticity of proper harmonic maps between complex hyperbolic spaces (in preparation).
- [11] S. Nishikawa and K. Ueno: Dirichlet problem at infinity for harmonic maps and Carnot spaces (in preparation).
- K. Ueno: Dirichlet problem for harmonic maps between Damek-Ricci spaces. Tohoku Math. J., 49, 565-575 (1997).
- P. Pansu: Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. of Math., 129, 1-60 (1989).