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A Note on the Diophantine Equation ax + b c

By Nobuhiro TERAI*) and Kei TAKAKUWA* *)

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1997)

1. Introduction. In our previous papers
Terai [6], [7] and [8], we proposed the following
conjecture and proved it under some conditions
when p 2, q 2 and r is an odd prime.

Conjecture. If a, b, c, p, q, r are fixed posi-
r

tire integers satisfying a / b c with p, q, r
> 2 and (a, b) 1, then the Diophantine equa-
tion

x b
y

(1) a + c
has only the positive integral solution (x, y, z)
(p, q, r).

The positive integers a, b, c satisfying a +
b r

C can be expressed as follows (cf. Lemma
in [81)"

Lemma 1. The positive integral solutions of
the equation a + b c with (a, b) 1 and r
odd >_ 3 are given by

(r-1)/2

) ( r )u,_<a+l) aa +/-u 2 (--1 v
=o 2j

(r-1)/a ( )b + v
i=o 2j + 1

u v
2c u + v where u, v are integers such that (u,

v) 1 and u v (mod 2).
From now on, let a, b, c be as in Lemma 1

with u m, v 1’ i.e.
(r-1)/2

(2) a + m
=0 2j

m

b _+ Y (_ 1) r mr-(21+l)
=0 2j+l

,c=m +1,

where m is a positive integer with 2lm.
Then in [6], [7] and [8], we showed that if b

is an odd prime and there is an odd prime l such
that ab--0 (mod l) and e----0 (mod r), where e
is the order of c modulo l, then equation (1) has
only the positive integral solution (x, y, z)=
(2, 2, r)under some conditions. Recently, using
the divisibility property concerning Lucas se-
qences, when r 3, Le [3] has proved the follow-
ing
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Theorem. (Le [3]). Let a, b, c be positive in-
tegers satisfying (2) with r 3. If 2 IIm and b is

an odd prime, then equation (1) has only the posi-
tive integral solution (x, y, z) (2, 2, 3).

In this paper, using .a similar method as in

[3], when r is an odd prime, we generalize Le’s
theorem as follows:

Theorem 1. Let r be an odd prime. Let a, b,
c be positive integers satisfying (2). Let m be a posi-
tive integer with 2 m and m >_ 6. Suppose that b
is an odd prime and b satisfies at least one of the
following three conditions:

(i) b 1 (mod m), (ii) b 1 (mod 4),

(iii) a---r
where denotes the Jacobi symbol and a

Then equation (1) has only the positive integ-
ral solution ( x, y, z) (2, 2, r).

In Theorem 1, we suppose that 2 m and m
_> 6. When m 2, we also prove the following
theorem. We note that we need not suppose b is
an odd prime in Theorem 2.

Theorem 2. Let r be an odd prime. Let a, b,
c be positive integers satisfying (2) with m 2.
Suppose that b satisfies at least one of the following
three conditions:

(i) b-- 1 (mod3), (ii) b-- 1 (mod 4),

(iii) a---
where a 2a.

Then equation (1) has only the positive integ-
ral solution (x, y, z) (2, 2, r).

Since b 3m2- 1 1 (mod 4) when r
--, Theorems 1 and 2 give a generalization of
Le’s theorem.

2. Lemmas. In this section, we prepare
some lemmas used in the proof of Theorems 1
and 2.

Lemma 2. Let r be odd >_ 3. Let a, b, c be
positive integers satisfying (2). Let m be a positive
integer with 2 rn and rn >_ 6. Suppose that b satis-
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ties at least one of the following three conditions

(i) b 1 (mod m), (ii) b- 1 (mod4),

(iii) a--
where a ma’.

If equation (1) has positive integral solutions
( x, y, z), then x and y are even.

Proof. Let (x, y, z) be a solution of (1).
We first show that y is even.

Case (i)" b--- 1 (mod m). From (1) and
(2), we have ax+ by=- (- 1)Y =- 1 cz (mod
m). Since m > 6, y must be even.

Case (ii)" b 1 (rood 4). If x 1, then
+ rm + 1 --= 1 (rood m2) from (1) and (2). Thus
rm--= __+ 2 (mod m ) and so m--2, which is a
contradiction. Hence x--> 2. Then from (1) and
(2), we obtain (-- 1) y

1 (rood 4), which implies
that y must be even.

b
1. Since a + cCase (iii) a,

(c)we have 1-" - Thus from (1), we

have a-- 1, which implies that

must be even. Hence in all cases, it follows that g
is even.

We next show that x is even (using that y is
even). Note that c =-- 5 (mod 8), since c m + 1

and 211. From (2), we see that - --a m + 1 c

1" 1 1. Then from (1), we have --c 1,since is even. Thus z

must be even.
Lemm . (1) (Strmer [5], Ljunggren[4]).
The Diophantine equation

x + 1= 2y"
has only the positive integral solution ( x, y, )
(2:39, 1:3, 4) with x > 1 and > 2.
(2) (Ko [11). The Diophantine equation

z --1=
has only the positive integral solution (x, y, )
(:3, 2, :3) with > 1.

Lema 4:. (Lehmer [21). Let o + vi and

fl - vi, where , v are nonzero integers with
(, v) 1. Define the sequence { U} by

U.= -B for >1.

Let 1) be a given odd prime, and let mo be the least
positive integer such that P Umo. If ])to Umo and
pto+t[ Um for some positive integers to, t, m, then we
have mopt[m.

3. Proof of Theorem 1. Suppose that our
assumptions are all satisfied. Let (x, y, z) be a

solution of (1).
Then it follows from Lemma 2 that x and y

are even.
We show that z is odd (using that b is an

odd prime). Suppose, on the contrary, that z were
even. Then equation (1) yields

c +a andc --a 1,
SO

(bn ) + 1 2c/.
Now Lemma 3, (1) implies that z/2 <_ 2. Thus

3 r b ax b
y

c 4
c Kc =a + < + <_c.

Since z is even, we have z 4. Hence we obtain
2 x/2c --a =1.

2Lemma 3, (2) implies that x 2. Then c a +
1 and so 1 + rm + 1 (mod m2), which is im-
possible. Hence z is odd. Then since y is even
and c 5 (rood 8), equation (1) implies that ax

+ 1 5z-- 5 (mod 8). Since 2[la, we havex=
2. Hence if y- 2, then from (1) we have z r.

Suppose that y > 2 and so z >-- 3. It follows
from Lemma 1 that

(z-1)/2

bu/2-- + v (- 1) z uz-(2+l)o2
--o 2j+l

,c=u +v,
where u, v are integers such that (u, v) 1 and
u v (rood 2). Since b is an odd prime, we see
that v + bE

where k is an integer with 0 _< k
y/2. If k > 0, then we have

m2 + l c u2 + v2 > b ( m2(r,/2

(-1)
1=0

2j + 1
-(/a + (- 1)(-’/ >

which is a contradiction. Thus k-" 0 and v-- --+
2 21. Hence by c m + 1 + v we have u

+ m. Clearly we may suppose that u m and
,)=1.

Now let c= m+ i and fl= m-- i. Put

U= a--fi forn--> 1. Then

a
U1 1’ Ur’- o---+b,
U,=

a
=+bf.

Let mo be the least positive integer such that
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b[U=o. Then molr. Since r is an odd prime and

mo 1, we have mo- r. Hence Lemma 4 implies

that we have rb-llz, since y > 2. Therefore we
obtain

2by> a2+ b
y

c -> c > e
l b2y_4(rb-l) / (j!) > -. (rb-l) 4 > 3

j=O
SO

2b
2y

2by+4 > 3b2y,
which is a contradiction. This completes the
proof of Theorem 1.

Remark. We checked that at least one of
the three conditions of Theorem 1 holds for a, b,
c which are positive integers satisfying (2) when
r-- 3, 5, 7, 11, respectively. In the Tables
and II below, we give some examples of m, a, b,
c satisfying the conditions of Theorem 1, when
r 5, 7. respectively. When r-- 3, 5, 7, the
positive integers a, b, c satisfying (2) can be ex-
pressed as follows:

r 3"a rn(m- 3),
b 3rn- 1,
c=m+l.
a +/- m(m4- 10m2 + 5),
b 5m4- 10rn + 1,
c= rn+ l.
a +/- m(m6- 21m4 + 35m2- 7),
b +/- (7m6- 35m4 -+- 21m2- 1),
c= rn2+ l.

Table I.Thecaseofr= 5 (6 <-- m <_ 150)

m a b c
6

14
18
22
26
46
58
62
70

146

5646
510454
1831338
5047262
11705746

204989846
654405938
913749862
1677270350

66307170346

612i
190121
521641
1166441
2278121
22366121
56548841
73843241
120001001

2271646121

37
197
325
485
677
2117
3365
3845
4901

21317

4. Proof of Theorem 2. Note that when
m= 2, we have c= 224- 1= 5.

(r-l)/2

We first show that x is even. Since
---0

(r) (r-l)/2 ( )2j
r r-1

=0 2j+ 1
2 Lemma 1 now

implies that

Table II. The case of r 7 (6 <_ m <_ 250)

26
86

102
162
226
238
242

7782916258
34694014809358
114636746937822

2925886463919882
30100969389341258
43239201522888518
48590549245358362

2146430467
2830056272707
7879348640771

126504326730851
932623079719267
1272100565359651
1405895873027491

677
7397
10405
26245
51077
56645
58565

r-1

a + (-- 1)---2 (mod 5),

b-- +/- (-- 1)z-2r-1 (mod 5).
In fact, putting u 2 and v 1 in Lemma 1, we
have

(r-l,/2

a==i=2 (_1) r
4z---- +2

=o 2j

(-- 1) r---t(r + (-- 1)-r--2" (rood 5)

Similarly, we have b-- + (-- 1)-ga2- (mod 5).
Thus we see that

a

Therefore (1) leads to (-- 1)x= 1 and so x is
even.

We next show that y is even (using that x is

even).
Case (i)" b--= 1 (mod a). From a +

5, we see that a 0 (mod 3). Thus since x is
even, equation (1) leads to 1 + (-- 1) --= (-- 1)
(mod :3) and so y is even. (Hence z is odd.)

Case (ii)’ b 1 (mod 4). Since x is even,
especially x >_ 2, equation (1) leads to (-- 1) y

1 (mod 4) and so y is even.

( b ) --11nthesamewayasCase (iii)’ a---r
in the proof of Lemma 2, Case (iii), we see that y
is even. Hence in all cases, it follows that y is
even.

b. 5From a + we see that ab 0
(mod :3). Thus since z and y are even, equation
(1) implies that 1 + 1 (- 1)" (mod :3) and so
z is odd. Then from (1), we have a

x + 1 5"
5 (mod 8). Since 2 a, we have x 2. Hence if y

2, then from (1) we have z r.
Suppose that y > 2 and so z --> 3. If follows

from Lemma 1 that
(z-1)/2 ( )b"/= + v E (_ 1) z u-(+,
=o 2j+ 1

v
2
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where u, v are integers such that (u, v) 1 and
u v (rood 2). Since b is odd, v is odd and so u
is even. Thus from 5 u + v, we have u +_
2 and v --+ 1. Cearly we may suppose that u
2andv= 1.

Now let a= 2 + and fl= 2--i. Put
n finU -- fl for n 1. Then

a --flU=I’ U= a--fl b,

U=
a

=+b}.
Let b- H= and mo(p) be the least positive
integer such that p Umo(). Then mo(p) Jr. Since

Table III. a, b satisfying a + b 5r (3 -< r < 30)

r a b
3
5
7

11
13
17
19
23
29

2
38

278
2642

33802
24478

3565918
35553398

8701963882

11
41
29

6469
8839

873121
2521451

103232189
10513816601

r is an odd prime and mo (p) =/= 1, we have

mo (P) r. Hence Lemma 4 implies that since

e(-l)y> 2, we have rp Iz for 1 <_jK n. By b=

=p, we have rb-lIz. Therefore as in Theorem
1, we also have a contradiction. This completes
the proof of Theorem 2.

Remark. We checked that if r is an odd
prime with r < 100, then at least one of the
three conditions of Theorem 2 holds for a, b
which are positive integers satisfying a -+- b
5 r. In the table Ill above, we give some examples

2 b2 5of a, b satisfying a + with 3 --< r < 30.

[1]

[2]

[31

[4l

[51

[61

[7]

IS]
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