## All congruent numbers less than 40000

By Fidel Ronquillo NEMENZO

Department of Mathematics, Sophia University (Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1998)

**§1.** Results. A square-free positive integer n is called a *congruent number* if it is the area of a right triangle with rational sides. The relevant family of elliptic curves defined over the rational field Q is

$$E_n: y^2 = x^3 - n^2 x$$

This is because a necessary and sufficient condition for n to be congruent is that  $E_n$  is of positive rank  $r_n$ . The Hasse-Weil *L*-function  $L(E_n, s)$ has analytic continuation to all of C, so we can consider its order  $s_n$  of vanishing at s = 1. Birch and Swinnerton-Dyer (BSD) conjectured that  $s_n$  $= r_n$ . Using algorithms in Cremona [4], we computed  $L^{(r)}(E_n, 1)$  for  $r = 0, 1, 2, \ldots$  using 300000 series terms, thus producing estimates of  $s_n$  for all square-free n < 100000. Together with rank computations for this range, we have obtained the following results.

a) 56949 curves have  $s_n \leq 1$ . Among these, 26729 curves have  $s_n = 0$  and the remaining 30220 curves have  $s_n = 1$ . The work of Coates-Wiles [1] and Gross-Zagier [2] proves  $r_n = s_n$  for these curves.

b) 3656 curves have  $s_n = 2$ . We found that among such curves, all the 1665 curves with n < 42553 have  $r_n \ge 1$ .

c) There are 185 curves with  $s_n = 3$ . Among these, 177 curves have  $r_n = 3$ , while for the remaining 8 curves, we have  $3 \le r_n \le 5$ . In either case, it follows that  $s_n = 3$  because otherwise  $s_n$ should be 1, and  $s_n = 1$  would imply  $r_n = 1$ , a contradiction. For the 8 curves, it is difficult to determine  $r_n$  because of the existence of certain quartic equations which are solvable locally everywhere but not globally. This suggests a non-trivial Tate-Shafarevich group for  $E_n$  or its 2-isogenous curve,

$$E'_n: y^2 = x^3 + 4n^2x.$$

d) For n < 100000, four curves have  $s_n \approx 4$ . These are  $E_{29274}$ ,  $E_{46274}$ ,  $E_{46754}$  and  $E_{57715}$ . All four curves have rank equal to 4.

These results, together with those of Coates

and Wiles [1], show that if n < 42553, the weak form of BSD holds:  $r_n > 0$  if and only if  $L(E_n, 1) = 0$ . As a consequence, we obtain all congruent numbers less than 42553.

§2. Rank computation algorithm. Using 2-descent, the computation of the rank  $r_n$  can be transformed into the problem of determining the solvability or non-solvability of certain Diophantine equations. Write  $x \sim y$  whenever x and y belong to the same coset of  $Q^{\times}/(Q^{\times})^2$ . Consider two types of equations:

(1) 
$$dX^4 + \frac{4n^2}{d}Y^4 = Z^2; d \mid 4n^2,$$

(2) 
$$dX^4 - \frac{n^2}{d}Y^4 = Z^2; d \mid n^2.$$

Now let  $D_1 = d_1, d_2, \ldots, d_{\mu}$  be the set of distinct (i.e. pairwise inequivalent) square-free integers  $d_i$  such that  $d_i \sim d$   $(i = 1, 2, \ldots, \mu)$  for some d dividing  $4n^2$  and (1) is globally solvable in integers X, Y, and Z with  $(X, \frac{4n^2}{d}YZ) = (Y, dXZ) = 1$ . Similarly, let  $D_2 = d_{\mu+1}, d_{\mu+2}, \ldots, d_{\mu+\nu}$  be the set of distinct square-free integers  $d_j$  such that  $d_j \sim d$   $(j = \mu + 1, \mu + 2, \ldots, \mu + \nu)$  for some divisor d of  $n^2$  and (2) is solvable in integers X, Y and Z with  $(X, \frac{n^2}{d}YZ) = (Y, dXZ) = 1$ . Then  $D_1$  and  $D_2$  are finite subgroups of  $Q^*/(Q^*)^2$  and  $r_n = \log_2\mu\nu - 2$  (cf. Silverman and Tate [6]).

By determining the integers d such that (1) or (2) are locally solvable everywhere, we can bound  $r_n$  from above. We then search for global solutions of (1) and (2) to bound  $r_n$  below. While the assumption of the BSD conjecture would guarantee the eventual termination of solution search algorithms, several equations have very large solutions. The following method involving successive parameter changes was used for a more efficient search of solutions of the equation (3)  $aX^4 + bY^4 = Z^2$ .

First we search for  $(x_0, y_0, Z_0)$  satisfying the equation  $ax^2 + by^2 = Z^2$ , which has quadratic form parametric solutions

$$x = a_1 i^2 + a_2 i j + a_3 j^2 = f(i, j),$$
  

$$y = b_1 i^2 + b_2 i j + b_2 j^2 = a(i, j).$$

 $y - o_1i + o_2ij + b_3j^- = g(i, j)$ . Next we search for  $(i_0, j_0, X_0)$  satisfying the equation  $a_1i^2 + a_2ij + a_3j^2 = X^2$ , which has parametric solutions

$$i = c_1 k^2 + c_2 k l + c_3 l^2 = F(k, l),$$
  

$$j = d_1 k^2 + d_2 k l + d_3 l^2 = G(k, l).$$

We then search for k and l such that y = g(F(k, l), G(k, l)) is a square. If unsuccessful over a certain range, we employ another change of parameters and solution search. This method has allowed us to produce large solutions for equations (3). For example, we found the solution X = 23134031, Y = 81124821 and Z = 1327211620355592802 to the equation  $2nX^4 +$  $2nY^4 = Z^2$  for n = 20201, proving that 20201 is a congruent number. For n = 35842, we found the solution X = 19482547427, Y = 80901619850 to the equation  $X^4 + Y^4 = 17921Z^2$ , to prove likewise that 35842 is congruent.

§3. Local-global. Equations (2) and (1) which have solutions everywhere locally but none globally determine non-trivial elements of the Tate-Shafarevich groups III  $(E_n(Q))$  and III  $(E'_n(Q))$ , which we shall describe in part.

Consider the 2-isogeny  $\phi: E_n \to E'_n$  given by

$$(x, y) \mapsto \left(\frac{y^2}{x^2}, \frac{y(x^2 + n^2)}{x^2}\right)$$
$$(0, 0) \mapsto \infty'$$
$$\infty \quad \mapsto \infty'$$

and its dual  $\psi: E'_n \to E_n$  given by  $(x, y) \mapsto \left(\frac{y^2}{4x^2}, \frac{y(x^2 - 4n^2)}{8x^2}\right)$   $(0, 0) \mapsto \infty$  $\infty' \mapsto \infty$ .

One can show that  $E_n(\mathbf{Q})/\psi(E'_n(\mathbf{Q}))$  and  $E'_n(\mathbf{Q})/\phi(E_n(\mathbf{Q}))$  are isomorphic to  $D_2$  and  $D_1$ , respectively. The finite subgroup  $S^{\phi}(E'_n) \subset \mathbf{Q}^{\times}/(\mathbf{Q}^{\times})^2$  consisting of d's for which (2) is locally solvable everywhere is the  $\psi$ -part of the Selmer group of  $E'_n$ . Similarly, the finite subgroup  $S^{\phi}(E_n) \subset \mathbf{Q}^{\times}/(\mathbf{Q}^{\times})^2$  consisting of d's for which (1) is locally solvable everywhere is the  $\phi$ -part of the Selmer group of  $E'_n$ . The quotient of  $S^{\psi}(E'_n)$  by  $D_2$  is isomorphic to III  $(E'_n)[\phi] \subset III (E'_n)$ , while that of  $S^{\phi}(E_n)$  by  $D_1$  is isomorphic to III  $(E_n)[\phi] \subset III (E_n)$ . We have the following exact sequences:

$$\begin{array}{l} 0 \to E_n(\mathbf{Q})/\psi(E'_n(\mathbf{Q})) \to S^{\phi}(E'_n) \to \mathrm{III}(E'_n)[\psi] \to 0, \\ 0 \to E'_n(\mathbf{Q})/\phi(E_n(\mathbf{Q})) \to S^{\phi}(E_n) \to \mathrm{III}(E_n)[\phi] \to 0. \end{array}$$

For 0-rank curves  $E_n$ , we computed the order  $| \amalg (E_n) |$  using the conjectural (BSD) equation,

 $L(E_n, 1) = \Omega \mid \text{III} (E_n) \mid \mid E_n(Q)_{tors} \mid^{-2} \prod c_p$ , where  $\Omega$  is a real period of  $E_n$ ,  $c_p = (E_n(Q_p) : E_n^o(Q_p))$  is the index of the subgroup  $E_n^o(Q_p)$  of p-adic points with good reduction mod p in  $E_n(Q_p)$ ; and the product is taken over all primes of bad reduction. For all 0-rank curves  $E_n$  with n < 100000, computations show that  $\mid \text{III} (E_n) \mid = t^2$  for  $t \le 40$ . In particular,  $\mid \text{III} (E_{72073}) \mid = 40^2$ .

Let  $E_n$  have rank 0. Using Tate's algorithm (cf. [4]) to compute  $c_p$ , we can obtain the ratio of the orders of the Tate-Shafarevich groups of the isogenous curves  $E_n$  and  $E'_n$ .

**Proposition.** Let k be the number of prime divisors p of n such that  $p \equiv 3 \pmod{4}$ . For 0-rank curves  $E_n$ , the ratio  $| \amalg (E'_n) | / | \amalg (E_n) |$  of the orders of the Tate-Shafarevich groups of the isogenous curves  $E_n$  and  $E'_n$  is

$$2^{k-2} \text{ if } n \equiv 1 \pmod{8},$$
  

$$2^{k-1} \text{ if } n \equiv 3 \pmod{8},$$
  

$$2^{k} \text{ if } n \text{ is even.}$$

For example, consider the 0-rank curve  $E_{42}$ . Assuming the BSD conjecture, we compute | III  $(E_{42})$  | to be trivial. The proposition shows that | III  $(E'_{42})$  | = 4, suggesting the existence of an associated equation (2) which has local solutions everywhere but none globally. One such equation is  $-7 \cdot 3^2 \cdot X^4 + 7 \cdot 2^2 \cdot Y^4 = Z^2$ .

§4. Tables. ( $E_n$  is represented by the number n in Tables II - IV.)

Table I

| $S_n$ | r <sub>n</sub>      | No. of curves $E_n$ with $n < 100000$ |
|-------|---------------------|---------------------------------------|
| 4     | 4                   | 4                                     |
| 3     | 3                   | 177                                   |
| 3     | $3 \le r_n \le 5$   | 8                                     |
| 2     | $1 \leq r_n \leq 2$ | 1558(n < 42553)                       |
| 2     | $1 \leq r_n \leq 4$ | 107 (n < 42553)                       |
| 2     | $0 \leq r_n \leq 2$ | $1767 (n \ge 42553)$                  |
| 2     | $0 \leq r_n \leq 4$ | 224 ( $n \ge 42553$ )                 |
| 1     | 1                   | 30220                                 |
| 0     | 0                   | 26729                                 |

| 29274 4627                                                 |       | 4 467 | 754 5 | 57715 | $26245 \ 42486 \ 68839 \ 80189 \ 82205 \ 83845 \ 88502 \ 92045$ |       |       |       |       |  |  |  |
|------------------------------------------------------------|-------|-------|-------|-------|-----------------------------------------------------------------|-------|-------|-------|-------|--|--|--|
| Table N. All curves $E_n$ ; $n < 100000$ ; $s_n = r_n = 3$ |       |       |       |       |                                                                 |       |       |       |       |  |  |  |
| 1254                                                       | 2605  | 2774  | 3502  | 4199  | 4669                                                            | 4895  | 6286  | 6671  | 7230  |  |  |  |
| 7766                                                       | 8005  | 9015  | 9430  | 9654  | 10199                                                           | 10549 | 11005 | 12166 | 12270 |  |  |  |
| 12534                                                      | 12935 | 13317 | 14965 | 15655 | 16206                                                           | 16887 | 17958 | 18221 | 19046 |  |  |  |
| 19726                                                      | 20005 | 20366 | 20774 | 20909 | 21414                                                           | 22134 | 23359 | 23405 | 23446 |  |  |  |
| 23709                                                      | 24190 | 24414 | 26013 | 26565 | 27613                                                           | 28007 | 28221 | 28806 | 29055 |  |  |  |
| 29294                                                      | 29614 | 30270 | 32039 | 32318 | 32599                                                           | 32893 | 33117 | 33286 | 35269 |  |  |  |
| 35286                                                      | 35719 | 36366 | 36519 | 37862 | 38982                                                           | 39630 | 40397 | 40406 | 40710 |  |  |  |
| 40885                                                      | 40894 | 41151 | 41181 | 41230 | 41309                                                           | 41582 | 41943 | 42029 | 43405 |  |  |  |
| 43870                                                      | 45037 | 45118 | 46246 | 47094 | 47957                                                           | 48622 | 50061 | 50583 | 50629 |  |  |  |
| 51302                                                      | 51359 | 51590 | 51933 | 53605 | 55279                                                           | 55510 | 55549 | 56406 | 56630 |  |  |  |
| 56990                                                      | 57310 | 58326 | 58695 | 59415 | 60006                                                           | 60119 | 60229 | 60415 | 60574 |  |  |  |
| 60847                                                      | 61815 | 63005 | 65198 | 65310 | 65535                                                           | 65639 | 67438 | 67542 | 67606 |  |  |  |
| 68295                                                      | 68605 | 69015 | 69085 | 69326 | 69509                                                           | 69870 | 70013 | 70189 | 70774 |  |  |  |
| 70941                                                      | 70959 | 71654 | 72151 | 72854 | 73055                                                           | 73151 | 74102 | 74166 | 75174 |  |  |  |
| 75454                                                      | 76245 | 76479 | 76958 | 77046 | 77486                                                           | 78422 | 78526 | 80015 | 81469 |  |  |  |
| 81669                                                      | 81959 | 82309 | 83159 | 84134 | 84390                                                           | 85470 | 85702 | 86086 | 86790 |  |  |  |
| 88206                                                      | 88422 | 89238 | 89286 | 90174 | 90597                                                           | 91749 | 91910 | 92157 | 93126 |  |  |  |
| 94655                                                      | 95095 | 97422 | 98798 | 99231 | 99309                                                           | 99645 |       |       |       |  |  |  |

Table II. All curves  $E_n$ ; n < 100000;  $s_n \doteq 4$ ,  $r_n = 4$ 

| References |  |
|------------|--|

- J. Coates and A. Wiles: On the conjecture of Birth and Swinnerton-Dyer. Invent. Math., 39, 223-251 (1977).
- B. Gross and D. Zagier: Heegner points and derivatives of *L*-series. Invent. Math., 84, 225-320 (1986).
- [3] H. Wada and M. Taira: Computations of the rank of the elliptic curve  $y^2 = x^3 - n^2 x$ . Proc. Japan Acad., **70A**, 154-157 (1994).
- [4] J. E. Cremona: Algorithms for Modular Elliptic Curves. Cambridge University Press (1992).

Table III. All curves  $E_n$ ; n < 100000;  $s_n = 3$ ;  $3 \le r_n \le 5$ 

- [5] J. H. Silverman: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, 106, Springer-Verlag, New York (1986).
- [6] J. H. Silverman and J. Tate: Rational Points on Elliptic Curves. Springer-Verlag, New York (1992).