Families of elliptic Q-curves defined over number fields with large degrees

By Takeshi Hibino and Atsuki Umegaki
Department of Mathematics, School of Science and Engineering, Waseda University
(Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1998)

Abstract

An elliptic curve E defined over $\overline{\mathbf{Q}}$ is called a \mathbf{Q}-curve, if E and E^{σ} are isogenous over $\overline{\mathbf{Q}}$ for any σ in $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$. Many examples of \mathbf{Q}-curves defined over quadratic fields have already been known. In this paper, we will give families of \mathbf{Q}-curves defined over quartic and octic number fields.

1. Introduction. Definition 1.1. Let E be an elliptic curve defined over $\overline{\mathbf{Q}}$. Then E is called a \mathbf{Q}-curve if E and its Galois conjugate E^{σ} are isogenous over $\overline{\mathbf{Q}}$ for any σ in $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$. Moreover we call a \mathbf{Q}-curve E of degree N if E has an isogeny to its conjugate E^{σ} with degree dividing N for any σ in $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$.

In Gross [2], E was assumed to have complex multiplication, but we do not assume that in this paper.

Q-curves are deeply connected with a modularity problem for a certain class of high dimensional abelian varieties over \mathbf{Q}. The following conjecture, which is known as a generalized Taniyama-Shimura conjecture, elucidates the relation of \mathbf{Q}-curves to the problem:

Conjecture 1.2 (Ribet). Every Q-curve is modular, namely it is isogenous over $\overline{\mathbf{Q}}$ to a factor of the jacobian variety of the modular curve $X_{1}(N)$ for a positive integer N.

Recently many examples of \mathbf{Q}-curves defined over quadratic fields have been constructed in [3], [4] and [8], and the validity of this conjecture have been confirmed in these cases. Thus we are interested in finding non-trivial examples of Q-curves defined over number fields whose degrees are greater than two.

In his paper [3], Hasegawa has given families of \mathbf{Q}-curves of prime degree p under the condition that the modular curve $X_{0}(p)$ has genus zero. In the present paper we obtain families of Q-curves of degree N over quartic and octic number fields, by dealing with the case where the modular curve $X_{0}(N)$ is hyperelliptic and N is a square-free positive integer.
2. Data on the modular curve $X_{0}(N)$. Let
$N=\Pi_{i=1}^{n} p_{i}$ be a square-free positive integer. We denote by $X_{0}(N)$ the modular curve corresponding to the congruence subgroup $\Gamma_{0}(N)$ of $\mathrm{SL}_{2}(\boldsymbol{Z})$. For a positive integer $d \neq 1$ dividing N, we define the Atkin-Lehner involution w_{d} on $X_{0}(N)$, and denote by $X_{0}^{*}(N)$ the quotient curve $X_{0}(N) /\left\langle w_{d}\right| d|N\rangle$, where w_{1} means the identity morphism over $X_{0}(N)$. From now on we assume that $X_{0}(N)$ is a hyperelliptic curve with genus g. In order to state our main result, we need some basic data about the modular curve $X_{0}(N)$, i.e. a defining equation of $X_{0}(N)$ over \mathbf{Q}, the action of the Atkin-Lehner involutions $w_{d}, d \mid N, d \neq 1$, on $X_{0}(N)$ and a certain formula for the covering map j from $X_{0}(N)$ to the projective j-line. We can calculate these by using the method of [5]. In the following, we sketch this method which is based on the computation of the Fourier coefficients of some modular forms.

Let $S_{2}\left(\Gamma_{0}(N)\right)$ be the vector space over \mathbf{C} of cusp forms of weight two for $\Gamma_{0}(N)$. We note that there is a natural isomorphism :

$$
H^{0}\left(X_{0}(N), \Omega_{X_{0}(N) / \mathrm{C}}^{1}\right) \cong S_{2}\left(\Gamma_{0}(N)\right)
$$

From the assumption that N is square-free and $X_{0}(N)$ is hyperelliptic, any automorphism w_{d}, $d \mid N$, has no fixed cuspidal points, so $\overline{\sqrt{-1} \infty}$ is not a Weierstrass point, where $\overline{\sqrt{-1} \infty}$ is the point of $X_{0}(N)$ represented by $\sqrt{-1} \infty$. Therefore we can choose a basis h_{1}, \ldots, h_{g} of $S_{2}\left(\Gamma_{0}(N)\right)$ with the following Fourier expansions:

$$
\begin{aligned}
h_{1}(z) & =q^{g}+s_{1}^{(g+1)} q^{g+1}+\cdots+s^{(i)} q^{i}+\cdots, \\
h_{2}(z) & =q^{g-1}+s_{2}^{(g)} q^{g}+\cdots+s_{2}^{(i)} q^{i}+\cdots, \\
& \vdots \\
h_{g}(z) & =q+s_{g}^{(2)} q^{2}+\cdots+s_{g}^{(i)} q^{i}+\cdots,
\end{aligned}
$$

Table I. Data on $X_{0}(N)$

N	$f(x)$	$d,\left(w_{d}^{*} x, w_{d}^{*} y\right)$
22	$2\left(x^{3}+4 x^{2}+4 x+2\right)\left(2 x^{3}+4 x^{2}+4 x+1\right)$	$2,\left(\frac{1}{x},-\frac{y}{x^{3}}\right) ; 11,(x,-y)$
26	$x^{6}-8 x^{5}+8 x^{4}-18 x^{3}+8 x^{2}-8 x+1$	$2,\left(\frac{1}{x}, \frac{y}{x^{3}}\right) ; 26,(x,-y)$
33	$\left(x^{2}+x+3\right)$	$3,\left(\frac{3}{x},-\frac{9 y}{x^{4}}\right) ; 11,(x,-y)$
35	$\left(x^{6}+7 x^{5}+28 x^{4}+59 x^{3}+84 x^{2}+63 x+27\right)$	$7,\left(-\frac{1}{x},-\frac{y}{x^{4}}\right) ; 35,(x,-y)$
39	$\left(x^{2}+x-1\right)\left(x^{6}-5 x^{5}-9 x^{3}-5 x-1\right)$	$3,\left(\frac{1}{x}, \frac{y}{x^{4}}\right) ; 39,(x,-y)$
46	$\left(x^{3}+x^{3}-x^{2}+x+1\right)\left(x^{4}-7 x^{3}+11 x^{2}-7 x+1\right)$	$2,\left(\frac{2}{x},-\frac{8 y}{x^{6}}\right) ; 23,(x,-y)$
30	$\left(x^{6}+5 x^{5}+14 x^{4}+25 x^{3}+28 x^{2}+20 x+8\right)$	$2,\left(\frac{x+1}{x-1},-\frac{4 y}{(x-1)^{3}}\right) ;$
		$5,\left(-\frac{1}{x}, \frac{y}{x^{4}}\right) ; 15,(x,-y)$

where $q=e^{2 \pi \sqrt{-1} z}$ and the coefficients $s_{k}^{(i)}$ are rational numbers. By the assumption of the hyperellipticity, we may write a defining equation of $X_{0}(N)$ of the type
(2.1) $\quad y^{2}=f(x)$,
where f is a polynomial over \mathbf{Q}. We put $x=$ $\frac{h_{2}(z)}{h_{1}(z)}=q^{-1}+\cdots$. Then x defines a covering map from $X_{0}(N)$ to the projective line of degree two (cf. [7]). Now we put $y=\frac{q}{h_{1}(z)} \frac{d x}{d q}=-$ $q^{-(g+1)}+\cdots$. Then x and y satisfy an equation of the form (2.1), which can be viewed as a defining equation of $X_{0}(N)$, and we can determine recursively the coefficients of $f(x)$ by observing the Fourier expansions of x and y.

Denote by $\mathbf{Q}\left(X_{0}(N)\right)$ the function field of $X_{0}(N)$ defined over \mathbf{Q}. From the action of w_{d} on $S_{2}\left(\Gamma_{0}(N)\right)$, we explicitly describe the action of w_{d}^{*} on the generators x and y of $\mathbf{Q}\left(X_{0}(N)\right)$. To construct families of \mathbf{Q}-curves defined over number fields with degree 4 and 8 , we consider the case where the level N is a composite number, namely

$$
N=22,26,30,33,35,39 \text { and } 46
$$

Then we obtain the following result:
Proposition 2.1. A defining equation of $X_{0}(N)$ and the action of w_{d}^{*} on x and y are given as in Table I.

Using this result, we find an expression of
the covering map j in terms of x and y; For a positive integer M which gives the hyperelliptic involution w_{M}, i.e. $w_{M}^{*} x=x$ and $w_{M}^{*} y=-y$, we put $j_{M}=w_{M}^{*} j$. Then $j+j_{M}$ and $\frac{j-j_{M}}{y}$ are w_{M}^{*}-invariant, so they are rational functions of x, which are determined explicitly by observing the pole divisors and the values at the cusps of x, y, j and j_{M}, and also by comparing the Fourier expansions. Since the size of the expression is rather large, we shall give the covering map j only for $N=22$ and 30 in Table III.
3. Results. Next we consider a parameterization of the \mathbf{Q}-rational points on $X_{0}^{*}(N)$ by using the function x of $\mathbf{Q}\left(X_{0}(N)\right)$. We define an element t of $\mathbf{Q}\left(X_{0}(N)\right)$ by a 'trace'

$$
\begin{equation*}
t=k_{N} \cdot \sum_{d \mid N} w_{d}^{*}(x) \tag{3.2}
\end{equation*}
$$

where k_{N} is a rational constant.
Lemma 3.1. If $k_{N} \neq 0$, then t parameterizes the \mathbf{Q}-rational points on $X_{0}^{*}(N)$.

Proof. We see that the function field $\mathbf{Q}\left(X_{0}\right.$ $(N))$ of $X_{0}(N)$ is a $(2, \cdots, 2)$-extension of degree 2^{n} over $\mathbf{Q}\left(X_{0}^{*}(N)\right)$, since the Galois group of the extension is generated by the set of the automorphisms $\left\{w_{d}^{*}|d| N\right\}$. Since the pole divisor $(x)_{\infty}$ of x is equal to $\overline{\sqrt{-1} \infty}+w_{M}(\sqrt{\sqrt{-1} \infty)}$, it follows that

$$
(t)_{\infty}=\frac{1}{2} \sum_{d \mid N} w_{d}\left((x)_{\infty}\right)=\sum_{d \mid N} w_{d}(\overline{\sqrt{-1} \infty})
$$

Table II. Data on parameterization of $X_{0}(N)$

N	k_{N}	$x(r)$	$y(r)$
22	$\frac{1}{4}$	$r+\sqrt{r^{2}-1}$	$((2 r-1) \sqrt{r+1}+(2 r+1) \sqrt{r-1}) \sqrt{16 r^{3}+48 r^{2}+44 r+13}$
26	$\frac{1}{4}$	$r+\sqrt{r^{2}-1}$	$((2 r-1) \sqrt{r+1}+(2 r+1) \sqrt{r-1}) \sqrt{4 r^{3}-16 r^{2}+5 r-1}$
33	$\frac{1}{4}$	$r+\sqrt{r^{2}-3}$	$\left(2 r^{2}-3+2 r \sqrt{r^{2}-3}\right) \sqrt{(2 r+1)\left(8 r^{3}+28 r^{2}+38 r+17\right)}$
35	$\frac{1}{4}$	$r+\sqrt{r^{2}+1}$	$\left(2 r^{2}+1+2 r \sqrt{r^{2}+1}\right) \sqrt{(2 r+1)\left(8 r^{3}-20 r^{2}+6 r-19\right)}$
39	$\frac{1}{4}$	$r+\sqrt{r^{2}-1}$	$\left(2 r^{2}-1+2 r \sqrt{r^{2}-1}\right) \sqrt{\left(4 r^{2}-14 r+9\right)\left(4 r^{2}+2 r-3\right)}$
46	$\frac{1}{4}$	$r+\sqrt{r^{2}-2}$	$\left(r\left(2 r^{2}-3\right)+\left(2 r^{2}-1\right) \sqrt{r^{2}-2}\right)$
30	$\frac{1}{8}$	$r+\sqrt{r^{2}-1}$	$2 \sqrt{\left(8 r^{3}+20 r^{2}+8 r+1\right)\left(8 r^{3}+20 r^{2}+16 r+5\right)}$

Clearly t is a non-constant rational function and $\left[\mathbf{Q}\left(X_{0}(N)\right): \mathbf{Q}(t)\right]=\operatorname{deg}\left((t)_{\infty}\right)=2^{n}$. Therefore t generates $\mathbf{Q}\left(X_{0}^{*}(N)\right)$ over \mathbf{Q}. This completes the proof.

Conversely, we parameterize the points on $X_{0}(N)$ which are Q-rational points on $X_{0}^{*}(N)$ by considering the fibre of the convering map X_{0} $(N) \rightarrow X_{0}^{*}(N), x \mapsto t$. We specialize the function t by a rational number r. Then we obtain the following result:

Proposition 3.2. Let $k_{N}, x(r)$ and $y(r)$ be as in Table II. Then the point $P_{r}=(x(r), y(r))$ on $X_{0}(N)$ is a unique point of the fibre of the Q-rational point represented by r on $X_{0}^{*}(N)$ up to conjugacy.

Proof. From Proposition 2.1 and Lemma 3.1, we can check that P_{r} is one of the points on the modular curve $X_{0}(N)$ which belong to the fibre of the point represented by r on $X_{0}^{*}(N)$. This completes the proof of the proposition.

Let K_{r} be the extension over \mathbf{Q} generated by $x(r)$ and $y(r)$. Then we remark that K_{r} is a (2, ..., 2)-extension which is defined independently of the choice of P_{r} and there exist infinitely many rational numbers r such that $\left[K_{r}: \mathbf{Q}\right]=2^{n}$ by Hilbert's irreducibility theorem. We put $j_{r}=$ $j(x(r), y(r))$ and define an elliptic curve E_{r} with j-invariant j_{r} by

$$
E_{r}:\left\{\begin{array}{lc}
Y^{2}+Y=X^{3} & \text { if } j_{r}=0 \\
Y^{2}=X^{3}+X & \text { if } j_{r}=1728 \\
Y^{2}+X Y=X^{3}-\frac{36}{j_{r}-1728} X-\frac{1}{j_{r}-1728} \\
\text { otherwise }
\end{array}\right.
$$

Our main result is the following:
Theorem 3.3. For any rational number r, E_{r} is a \mathbf{Q}-curve of degree N defined over K_{r}. Moreover every non-CM \mathbf{Q}-curve of degree N is isogenous to E_{r} over $\overline{\mathbf{Q}}$.

Proof. We use the following result of Elkies [1]: any elliptic curve corresponding to the Q-rational point of $X_{0}^{*}(N)$ is a \mathbf{Q}-curve of degree N, and conversely any non-CM \mathbf{Q}-curve of degree N corresponds to a \mathbf{Q}-rational point of $X_{0}^{*}(N)$. Therefore the assertion is clear.

Remark 3.4. In the case where N is a prime number, we can also construct a similar family of \mathbf{Q}-curves of degree N over quadratic fields.

Our families have the following interesting application:

Remark 3.5. In the case $N=22$, we can prove the following claim using Theorem C in [4]: If the denominator of r is prime to 11 and r is congruence to neither 1 nor 9 modulo 11, then the elliptic curve E_{r} is a modular \mathbf{Q}-curve defined over K_{r}.
The proof will be given in another paper ([6]).

Table III. Data on $j(N=22,30)$

$N=22$	$j=(A(x)+B(x) y) /\left(2 x^{22}\right)$
$A(x)$	$\begin{aligned} & x^{33}+22 x^{32}+11 \cdot 19 x^{31}+2^{3} 11 \cdot 13 x^{30}+2^{4} 11 \cdot 23 x^{29} \\ & \quad+2 \cdot 11 \cdot 443 x^{28}+2^{6} 11 \cdot 23 x^{27}+2^{7} 11 \cdot 13 x^{26}+2^{6} 11 \cdot 19 x^{25} \\ & \quad+2^{9} 11 x^{24}+2^{10} x^{23}+2^{9} 3 x^{22}+2^{16} 3 x^{21}+2^{17} 7 \cdot 23 x^{20} \\ & \quad+2^{16} 11 \cdot 23 \cdot 47 x^{19}+2^{19} 11 \cdot 2663 x^{18}+2^{20} 3 \cdot 11 \cdot 5591 x^{17} \\ & \quad+2^{17} 11 \cdot 1189553 x^{16}+2^{22} 11 \cdot 401 \cdot 613 x^{15}+2^{23} 5 \cdot 11 \cdot 125899 x^{14} \\ & \quad+2^{22} 11 \cdot 107 \cdot 151 \cdot 317 x^{13}+2^{25} 3 \cdot 11 \cdot 337 \cdot 2081 x^{12}+2^{26} 31050451 x^{11} \\ & \quad+2^{25} 3 \cdot 7 \cdot 11 \cdot 13 \cdot 45587 x^{10}+2^{32} 11 \cdot 13 \cdot 41 \cdot 331 x^{9}+2^{33} 3 \cdot 11 \cdot 53 \cdot 827 x^{8} \\ & \quad+2^{32} 11 \cdot 320107 x^{7}+2^{35} 11 \cdot 39341 x^{6}+2^{36} 1115359 x^{5} \\ & \quad+2^{36} 11 \cdot 9283 x^{4}+2^{40} 3^{2} 11 \cdot 29 x^{3}+2^{41} 11 \cdot 41 x^{2}+2^{44} 11 x+2^{44} \end{aligned}$
$B(x)$	$\begin{aligned} & (x+1)(x+2)(x+4)\left(x^{2}+16\right)\left(x^{2}+3 x+4\right)\left(x^{2}+4 x+8\right) \\ & \quad\left(x^{2}+6 x+4\right)\left(x^{3}-8 x^{2}+16 x+16\right)\left(x^{3}+4 x^{2}+16 x+16\right) \\ & \left(x^{3}-16 x-32\right)\left(x^{4}-4 x^{3}+8 x^{2}+32 x+64\right) \\ & \left(x^{6}+4 x^{5}+16 x^{4}+96 x^{3}+320 x^{2}+512 x+256\right) \\ & \hline \end{aligned}$

$N=30$	$j=(A(x)+B(x) y) /\left(2(x-1)^{30} x^{5}(x+1)^{10}\right)$
$A(x)$	$x^{60}-5 x^{59}-30 x^{58}+235 x^{57}+25 x^{56}-3726 x^{55}+7620 x^{54}$
	$+20940 x^{53}-96255 x^{52}+21785 x^{51}+473942 x^{50}-695985 x^{49}$
	$-1002775 x^{48}+3161780 x^{47}+419176 x^{46}-8205664 x^{45}$
	$+2472933 x^{44}+36683843 x^{43}+418878642 x^{42}+4934156855 x^{41}$
	$+33020966525 x^{40}+139304348910 x^{39}+392406277628 x^{38}$
	$+738615506700 x^{37}+853857680085 x^{36}+358521497865 x^{35}$
	$-558814702826 x^{34}-1010196638005 x^{33}-481353378819 x^{32}$
	$+297255387224 x^{31}+372811349680 x^{30}-40731416160 x^{29}$
	$-78597010813 x^{28}+91186120441 x^{27}+76990681110 x^{26}$
	$-58178746527 x^{25}-107557876085 x^{24}+153414048430 x^{23}$
	$-167568580740 x^{22}+184073373604 x^{21}-183406038941 x^{20}$
	$+156351681587 x^{19}-109878375758 x^{18}+66498621453 x^{17}$
	$-35422847525 x^{16}+16250713012 x^{15}-6333882520 x^{14}$
	$+2042556352 x^{13}-541480745 x^{12}+131915465 x^{11}$
	$-32472234 x^{10}+7220541 x^{9}-1378785 x^{8}+267314 x^{7}$
	$-73404 x^{6}+27524 x^{5}-8825 x^{4}+1963 x^{3}-286 x^{2}+25 x-1$
$B(x)$	$\left(x^{2}-4 x-1\right)\left(x^{2}+2 x-1\right)\left(x^{3}+x^{2}+x-1\right)$
	$\left(x^{3}+x^{2}+3 x-1\right)\left(x^{3}+3 x^{2}-x+1\right)\left(x^{4}+6 x^{2}+1\right)$
	$\left(x^{4}+4 x^{3}-1\right)\left(x^{6}+5 x^{4}+16 x^{3}-5 x^{2}-1\right)$
	$\left(x^{6}-4 x^{5}+5 x^{4}+24 x^{3}-5 x^{2}-4 x-1\right)$
	$\left(x^{6}-2 x^{5}+7 x^{4}+12 x^{3}+23 x^{2}-10 x+1\right)$
	$\left(x^{8}-4 x^{7}-4 x^{6}+6 x^{5}+38 x^{4}-28 x^{3}+28 x^{2}-4 x+1\right)$
	$\left(x^{9}-5 x^{8}-4 x^{7}+24 x^{6}+62 x^{5}+14 x^{4}-4 x^{3}-32 x^{2}+9 x-1\right)$

Similar results can be obtained for $N=33$ and 46.
4. Examples All the calculations in the following were done by a program with GNU C and PARI-library, ver. 1.39.

Example. 4.1. Let $N=22$ and $r=11 / 5$. Then $K_{r}=\mathbf{Q}(\sqrt{6}, \sqrt{29})$ has class number one. The elliptic curve E_{r} has j-invariant
$\frac{1}{5^{22}}(9982696912817251292602665401196304704$

- $4075418948813532109010913359756115456 \sqrt{6}$
$+1853740279115963052151887869295541248 \sqrt{29}$
$-756786299924789576937842692427292672 \sqrt{174}$).
And the quadratic twist E of E_{r} by

$$
\begin{aligned}
\beta= & 1585084727553-\frac{1248019557557}{2} \sqrt{6} \\
& -989865700341 \sqrt{29}+\frac{826800325581}{2} \sqrt{174}
\end{aligned}
$$

has the following global minimal model :

$$
\begin{aligned}
E: y^{2}=x^{3} & +\left(9+\frac{1}{2} \sqrt{6}+\frac{1}{2} \sqrt{174}\right) x^{2} \\
& +(-383506419653-156534506597 \sqrt{6} \\
& +71201118525 \sqrt{29}+29073539873 \sqrt{174}) x \\
& -182798829223792711 \\
& \quad-74627160360067580 \sqrt{6} \\
& +33944822557919841 \sqrt{29} \\
& +13857943481193026 \sqrt{174}
\end{aligned}
$$

Then E has discriminant

$$
\begin{aligned}
\Delta(E)= & 770987498697389702212257965120 \\
& +314754328312196256240261626880 \sqrt{6} \\
& -143168784300891113577113736960 \sqrt{29} \\
& -58448411438624093585994387840 \sqrt{174} \\
(\Delta(E)= & \mathfrak{p}_{2}^{12} \cdot \mathfrak{p}_{5}^{2} \cdot\left(\mathfrak{p}_{5}^{\sigma}\right)^{11} \cdot\left(\mathfrak{p}_{5}^{\tau}\right) \cdot\left(\mathfrak{p}_{5}^{\sigma \tau}\right)^{22}
\end{aligned}
$$

and conductor

$$
\operatorname{cond}(E)=\mathfrak{p}_{2}^{4} \cdot \mathfrak{p}_{5} \cdot\left(\mathfrak{p}_{5}^{\sigma}\right) \cdot\left(\mathfrak{p}_{5}^{\tau}\right) \cdot\left(\mathfrak{p}_{5}^{\sigma \tau}\right)=2^{2} \cdot 5
$$

where $\quad \mathfrak{p}_{2}=(-2+\sqrt{6}), \mathfrak{p}_{5}=\left(\frac{1}{2}+\sqrt{6}+\frac{1}{2}\right.$
$\sqrt{29})$ and $\operatorname{Gal}\left(K_{r} / \mathbf{Q}\right)=\left\langle\sigma, \tau \mid \sigma^{2}=\tau^{2}=1\right\rangle . E$ is a modular \mathbf{Q}-curve from Remark 3.5.

Acknowledgements. The authors express sincere thanks to Prof. Fumiyuki Momose for his kind and warm encouragement during the prepa-
ration of this paper. They thank Yuji Hasegawa for the access to his preprint.

References

[1] N. Elkies: Remarks on elliptic K-curves (1993) (preprint).
[2] B. Gross: Arithmetic on Elliptic Curves with Complex Multiplication. LNM 776, Springer-Verlag. New York-Berlin-Heidelberg (1980).
[3] Y. Hasegawa: Q-curves over quadratic fields. Manuscripta Math., 94, 347-364 (1997).
[4] Y. Hasegawa, K. Hashimoto, and F. Momose: Modular Conjecture for \mathbf{Q}-curves and $\mathbf{Q M}$ - curves (1996)(preprint).
[5] T. Hibino and N. Murabayashi: Modular equations of hyperelliptic $X_{0}(N)$ and an application. Acta Arith., 82, no. 3, 279-291 (1997).
[6] T. Hibino and A. Umegaki: A family of elliptic Q-curves defined over biquadratic fields and their modularity (1997) (submitted).
[7] M. Shimura: Defining equations of modular curves $X_{0}(N)$. Tokyo J. Math., 18, no. 2, 443-456 (1995).
[8] A. Umegaki: A construction of everywhere good Q-curves with p-isogeny (1996)(submitted).

