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1. Introduction. Let M be an #-dimension-
al manifold with a conformal class C. A conformal
commection on M is an affine connection D pre-
serving the conformal class C, that is, for any
Riemannian metric g € C, there exists a 1-form
w, such that Dg = w, ® g. We also assume that
D is torsion-free. The triple (M, C, D) is called
a Weyl manifold and D is called a Weyl structure
on (M, C). A manifold admits an Einstein- Weyl
structure if there is a Weyl structure for which
the symmetric part of the Ricci curvature of the
conformal connection is proportional to a metric
in C. The Einstein-Weyl equation on the affine
connection, which needs an auxilary metric in a
given conformal class, is a conformally invariant
nonlinear partial differential equation. If (M, g)
is an Einstein manifold, then the Levi-Civita con-
nection V, defines an Einstein-Weyl structure of
the conformal class [ g]. Thus the notion of the
Einstein-Weyl structure is a generalization of an
Einstein metric to conformal structures.

Classically, it is well-known that a confor-
mally flat Einstein manifold must to be a con-
stant curvature manifold. In this paper, as an
analogue to this result, we will give classification
of closed conformally flat Einstein-Weyl man-
ifolds.

2. Preliminaries. Let (M, C, D) be a
Weyl manifold. We assume # = dim M = 3. Let
Ric” denote the Ricci curvature of D. In general,
Ricci curvature of conformal connection is not
symmetric, so we denote by Sym (Ric”) its sym-
metric part. The scalar curvature R, of D with
respect to g € C is defined by

2.1 R; = tr,Ric’.

A Weyl manifold (M, C, D) is said to be
an Einstein- Weyl manifold if the symmetric part
of the Ricci curvature Ric” is proportional to the
metric g in C. Therefore the Einstein- Weyl equa-
tion is

(2.2)

D

Sym(Ric’) = R—n"g.

Note that Rf g is conformally invariant quantity.
In terms of the Ricci curvature and the scalar
curvature of the metric g € C, the Einstein-
Weyl equation can be written by

. — 2 2
(2.3) Ric, + d 7 {_‘Ew:g + -, 0,0,)g
lw,|? R
+w,®w, —— g} ==t

where £ is the Lie derivative, 9, is the codif-
ferential of g, and the vector field co: is defined
as w,(X) = g(X, w}) for all vector fields X.

We prepare some known facts concerning
geometry of Weyl manifolds, which we will use
in this paper.

Theorem 2.1 (Gauduchon) (2]). Let (M, C, D)
be a closed Weyl manifold. Then up to homothety,
there exists a unique Riemannian metric g in the
conformal class C such that the corresponding
1-form w, is co-closed : 6,w, = 0.

The metric g € C is called the Gauduchon metric
if it is up to homothety the unique metric which
satisfies §,w, = 0.

Corollary 2.2. Let (M, C, D) be a closed
Einstein- Weyl  n-manifold, and g€ C the
Gauduchon metric. Then w: 1s a Killing vector field
on (M, g), and Einstein- Weyl equation can be
written in the following form:

2
(2.4) Ric, +”Tz(w,®w, —%) =%g.
Theorem 2.3 ([4]). Let (M, C, D) be a con-
nected closed Einstein- Weyl manifold, and g € C
the Gauduchon metric. If the scalar curvature Rf of
D with respect to g is non-positive but not identical-
ly zevo, then (M, g) is Einstein.

Theorem 2.4 ([4]). Let (M, C,D ) be a
closed Einstein- Weyl manifold and g € C the
Gauduchon metric. If Rf >0, then the fun-
damental group T,(M) of M is finite.

Theorem 2.5 ([4]). Let (M, C,D ) be a
closed connected non-trivial Einstein- Weyl manifold
with R} = 0. Then by(M) = 1.

Lemma 2.6. Let (M, C, D) be a connected



No. 6]

closed Einstein- Weyl manifold, and g € C the
n+ 2
e

Gauduchon metric.
const.
Proof. A direct calculation with the second

Then R, — |2 =

Bianchi identity: J,Ric, + —;—Rg = 0, and using
the Gauduchon metric.

3. Main result. Theorem 3.1. Let (M, C,
D) be an n-dimensional closed conformally flat
Einstein- Weyl manifold, n = 3. Then (M, C, D)
1S either

(1) Atrivial Einstein- Weyl structure induced by
a constant curvature metric,
or
(2) The type S* x S
We prepare the following Lemma:

Lemma 3.2. Let (M, C, D) be a closed con-
nected conformally flat Einstein- Weyl manifold, and
g € C the Gauduchon metric. Then the scalar curv-
ature R, of g, R,,D of D with respect to g, and the
norm |a),| of the corresponding 1-form are all con-
stants.

Proof. Because (M, g) is conformally flat,

we have
(3.1) V{Ric,(X, Z) — V,Ric,(X, V)

~ 5= VrRe (X, 2) = V;Rg(X, D} = 0.

On the other hand, g is the Gauduchon metric,
from the Einstein-Weyl equation, Ricci curvature
Ric, of g is written by ;

) R n—2 |w
(3.2) Ric, = —nlg - (w, ® w, — —nLg ),
so we get

(3.3) ;i—l—(vyk,g(x, 2) - V,R(X,Y))

— 2 710,00, + 7 0,00,
= V,0,X)w0,Y)

- V,0,(V)w,X) - %Vylwalzg(X, Z)
+ 27 Jog(x, V)]

= 0.
By taking a trace,

(3.4) dR,— —Z—w, "V, — —;-allw,l2 = 0.

Now w: is a Killing vector field, so
(3.5) Poig =0,

— 2
we get d (R, — L i |w‘,|2) = 0. On the other
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L 1_ 2 |w,|* = const.  So

hand, R, — R, =

D
const, and |w,|=const, and R, =R, —

(=D —2) |w, ?, we get R; = const.

Proof of Theorem 3.1. Note that R is con-
stant, so we consider three cases.

Firstly Rf is negative. In this case, the
Gauduchon metric is a conformally flat Einstein
metric, so it is a hyperbolic metric.

Nextly Rf is positive. In this case, the fun-
damental group is finite, so the universal cover-
ing space is simply connected compact conformal-
ly flat. From Kuiper’s theorem ([3]), that is con-
formally diffeomorphic to the standard sphere.
Note that
(3.6) — 4,w, = 2Ric,(®) =2(n — Daw,,
and

2
(3.7) — 4,0,= 3 R;w,

so we have w, = 0. In this case (M, C, D) is
the trivial Einstein-Weyl structure induced by
the standard sphere.

In the last case, Rf is identically zero. If w,
= 0, then this is a trivial Einstein-Weyl struc-
ture induced by the Euclidean metric. We assume
w, # 0. We have then

, —2
(3.8) Ric,= — "= (0, Qw,— | w,I'9) 2 0.

So note that b, (M) = 1 and from the Cheeger-
Gromoll splitting theorem ([1]) for manifolds of
non-negative Ricci curvature, the universal
covering of M is diffeomorphic to R X S

References

[1] J. Cheeger and D. Gromoll: The splitting theorems
for manifolds of non-negative Ricci curvature. J.
Diff. Geom., 6, 119—-128 (1971).

P. Gauduchon: La 1-form de torsion d’'une variéte
hermitienne compact. Math. Ann., 267, 495-518
(1984).

[3] N. Kuiper: On conformally flat manifolds in the

large. Ann. of Math., 50, 916—-924 (1949).

(2]

[4] H. Pedersen and A. Swann: Einstein-Weyl geomet-
ry, the Bach tensor and conformal scalar curva-
ture. J. Rein Angew. Math., 441, 99—-113 (1993).

[5] H. Pedersen and K. P. Tod: Three-dimensional

Einstein-Weyl in Math,, 97,
74-109 (1993).

[6] K. P. Tod: Compact 3-dimensional Einstein-Weyl
structures. J. London Math. Soc., 45, 341-351

(1992).

geometry. Adv.






