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1. Introduction. Let M be an ndimension-
al manifold with a conformal class C. A conformal
connection on M is an affine connection D pre-
serving the conformal class C, that is, for any
Riemannian metric g C, there exists a 1-form

w such that Dg o9 g. We also assume that
D is torsion-free. The triple (M, C, D) is called
a Weyl manifold and D is called a Weft structure
on (M, C). A manifold admits an Einstein-Weft
structure if there is a Weyl structure for which
the symmetric part of the Ricci curvature of the
conformal connection is proportional to a metric
in C. The Einstein-Weyl equation on the affine
connection, which needs an auxilary metric in a
given conformal class, is a conformally invariant
nonlinear partial differential equation. If (M, g)
is an Einstein manifold, then the Levi-Civita con-
nection V defines an Einstein-Weyl structure of
the conformal class [g]. Thus the notion of the
Einstein-Weyl structure is a generalization of an
Einstein metric to conformal structures.

Classically, it is well-known that a confor-
really flat Einstein manifold must to be a con-
stant curvature manifold. In this paper, as an
analogue to this result, we will give classification
of closed conformally flat Einstein-Weyl man-
ifolds.

2. Preliminaries. Let (M, C, D) be a
Weyl manifold. We assume n dim M _> 3. Let
RicD denote the Ricci curvature of D. In general,
Ricci curvature of conformal connection is not
symmetric, so we denote by Sym (RicD) its sym-
metric part. The scalar curvature R of D with
respect to g C is defined by

D(2.1) Ro trRic.
A Weyl manifold (M, C, D) is said to be

an Einstein-Weyl manifold if the symmetric part
of the Ricci curvature RicD is proportional to the
metric g in C. Therefore the Einstein-Weyl equa-
tion is

R
(2.2) Sym(Ric ) -n--g.

DNote that Ra g is conformally invariant quantity.
In terms of the Ricci curvature and the scalar
curvature of the metric g C, the Einstein-
Weyl equation can be written by

n- 2 I - #
2

(2.3) Ri% + 4 ag + -(6aoa)g

}+wa@w n g =-n-g"
where is the Lie derivative, a is the codif-
ferential of g, and the vector field w is defined
as wa(X) g(X, w*a) for all vector fields X.

We prepare some known facts concerning
geometry of Weyl manifolds, which we will use
in this paper.

Theorem 2.1 (Gauduchon) ([2]). Let (M, C, D)
be a closed Weyl manifold. Then up to homothety,
there exists a unique Riemannian metric g in the

conformal class C such that the corresponding

1-form oo is co-closed: aaa O.
The metric g C is called the Gauduchon metric
if it is up to homothety the unique metric which
satisfies aaa 0.

Corollary 2.2. Let (M, C, D)be a closed
Einstein- Weyl n-manifold, and g C the

#
Gauduchon metric. Then oo ,s a Killing vector field
on (M, g ), and Einstein-Weft equation can be
written in the following form:

(2.4) Rica+ n-2( ]wo]) Ro
4

(R)
n

Theorem 2.3 ([4]). Let M, C, D) be a con-

nected closed Einstein-Weft manifold, and g C
D

the Gauduchon metric. If the scalar curvature Ra of
D with respect to g is non-positive but not identical-
ly zero. then M, g ) is Einstein.

Theorem 2.4 ([4]). Let (M, C, D )be a

closed Einstein-Weft manifold and g C the
Gauduchon metric. If R > O, then the fun-
damental group re1 (M) ofM is finite.

Theorem 2.5 ([4]). Let (M, C, D )be a

closed connected non-trivial Einstein-Weyl manifold
D

with Ra O. Then b( M ) 1.
Lemma 2.6. Let (M, C, D) be a connected
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closed Einstein-Weyl manifold, and g C the

Gauduchon metric. Then R
n + 2

const.
Proof. A direct calculation with the second

1
Bianchi identity" 6oRico -+--Ro 0, and using
the Gauduchon metric.

3. Main result. Theorem 3.1. Let (M, C,
D) be an n-dimensional closed conformally flat
Einstein-Weyl manifold, n >_ 3. Then (M, C, D
is either

(1) A trivial Einstein-Weyl structure induced by
a constant curvature metric,

0"

(2) The type Sx x Sn-x.
We prepare the following Lemma’

Lemma 3.2. Let (M, C, D) be a closed con-
nected conformally flat Einstein- Weyl mantfold, and
g C the Gauduchon metric. Then the scalar curv-

D
ature Ro of g, Ro of D with respect to g, and the
norm lwol of the corresponding 1-form are a,ll con-
stants.

Proof Because (M, g)is conformally flat,
we have

I7 rRi% (X, Z) I7 zRi% (X, Y)
(3.1) 1

2 (n 1) I7 rRg(X, Z) I7 zRog(X I0} O.

On the other hand, g is the Gauduchon metric,
from the Einstein-Weyl equation, Ricci curvature
Rico of g is written by

(3.2) Ric =--n--g 4 co (R) t0- n g

so we get
1

(3.3) n 1 (I7 rRog(X Z) zRo(X, Y))

I7 zto(X)w(Y)
1v o(r)o(x) - lo,lo(x, z

lvlw,lg(X Y)}+
--0.

By taking a trace,

(3.4) dR -wo ’ wo dlo,l 0.
#Now w s a Killing vector field, so

(3.5) :g O,

we get d (Ro
n-- 2

4 wo 0. On the other

hand, R
n + 2

4 [wo const. So Ro=
Dconst., and [a)o const, and R Ro

(n 1)(n 2)
[w [, we get R const.

Pro4of of Theorem 3.1. Note that RD
is con-

stant, so we consider three cases.
Firstly RD is negative. In this case, the

Gauduchon metric is a conformally flat Einstein
metric, so it is a hyperbolic metric.

DNextly Ro is positive. In this case, the fun-
damental group is finite, so the universal cover-
ing space is simply connected compact conformal-
ly flat. From Kuiper’s theorem ([3]), that is con-
formally diffeomorphic to the standard sphere.
Note that
(3.6) Aowo 2Rico(wo*) 2(n- 1)wo,

and
(3.7) A

so we have wo= 0. In this case (M, C, D)is
the trivial Einstein-Weyl structure induced by
the standard sphere.

In the last case, RoD is identically zero. If
0, then this is a trivial Einstein-Weyl struc-

ture induced by the Euclidean metric. We assume
coo 4: 0, We have then

(3 8) Rico
n 2

(w ( wo _[wo io) > o4
So note that b (M)= 1 and from the Cheeger-
Gromoll splitting theorem ([1]) for manifolds of
non-negative Ricci curvature, the universal
covering of M is diffeomorphic to R x Sn-.
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