No. 7]

Proc. Japan Acad., 74, Ser. A (1998)

111

Grobner deformations of regular holonomic
systems

By Mutsumi SAITO,™ Bernd STURMFELS,

% ) % ok k)

and Nobuki TAKAYAMA

(Communicated by Heisuke HIRONAKA, M. J. A,, Sept. 14, 1998)

1. Torus-fixed ideals in the Weyl algebra.
This is a research announcement of results in the
first part of our monograph [15]. Let D = C{ x,,

..y Xy 04, ..., 0, denote the Weyl algebra
with complex coefficients. Thus D is the free
associative C-algebra on 2» generators modulo
the relations xx; = x,x;, 0,0; = 0,0;, x;0; = 0,x;
— 0,;. Left ideals in D are called D-ideals. They
represent systems of linear partial differential
equations with polynomial coefficients. The torus
(C*)" acts on the Weyl algebra by 8, ¢,0; and
x>t 'z, for (¢, ..., t,) € (C*)". We abbrevi-
ate 0, = x,0;. The set of elements in D which are
fixed by (C*)” equals the commutative polyno-
mial subring C[0] = C[6,, ..., 6,l.

Lemma 1.1. A D-ideal J is torus-fixed if
and only if J is generated by (finitely many) ele-
ments of the form x°- p(0)- 3" where a, b € N”
and p(6) € C[6].

Each f€ D is written uniquely as a finite
sum f= 3, ,cnn Copx’®@" with ¢, € C. Fix u, v
€ R” with u+ v 2>0. Then iny,(f) € D is
the subsum of all terms c,,,,xaab for which #-a
+ v b is maximal. For a D-ideal I we define the
wnitial ideal ing,, (I) to be the C-vector space
spanned by {in,, (:f€I}. If u+v>0
then ing,,, (1) is generally not a D -ideal; it is an
ideal in the commutative polynomial ring g7 (D)
=Clz, §1=Clx, ..., x, &, ..., §,]. Gener-
ators for the initial ideal can be computed by the
Weyl algebra® version of Buchberger’s Grobner
basis algorithm; see e.g. [3] and [6] for early
treatments and [13] for a precise introduction
and recent applications.
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If # + v =0 then the initial ideal is a D-
ideal. For w € R" we call in_,,, (I) a Grobuner
deformation of I. Specifically, if w € Z” then the
D-ideal in._,,, (I) is regarded as the limit of I
under the one-parameter subgroup of (C*)” de-
fined by w.

Lemma 1.2. For generic w € R”, the initial
D-ideal in_,,,,(I) is torus-fixed.

Let D*: = C<, ..., 25, 8y, ..., 0,0 be
the ring of differential operators on (C*)”. For a
D-ideal I define the commutative polynomial
ideal I: = D*I N CI6].

Proposition 1.3. If J is a torus-fixed D-ideal
then J  CL0] is generated by p(6 — b) -1I,_, H?;l
0, + 1 — 7) where - p(0) - 3" runs over a gener-
ating set of J.

2. Holonomic rank under Grobner deforma-
tions. Abbreviate e: = (1,1, ...,1) € R"
The ideal ing,, (1) in Clx, &] is called the char-
acteristic ideal of the D-ideal I. The Fundamental
Theorem of Algebraic Analysis ([5],[12],[14]) states
that each minimal prime of the characteristic
ideal ing, (I) has dimension = #. If ing, (1)
has dimension # then I is holonomic. In this case
the following vector space dimension is finite and
is called the holonomic rank of I:

(2.1)  rank(I) = dimg,,(C(x)[£1/C(2)[E] ing, (1)).
Here C(x) = C(x, ..., x,). The holonomic
rank equals the dimension of the C-vector space
of holomorphic solutions to I at any point outside
the singular locus.

Theorem 2.1. Let I be a holonomic D-ideal
and w € R". Thenin_,,,(I) is holonomic and
(2.2) rank(in_, ,,(I)) < rank(I).

Our proof of Theorem 2.1 is based on a
walk in the Grobner fan GF (I) as defined in [1].
This fan decomposes the closed half space {# +
v=0} of R”™ into finitely many convex
polyhedral cones, one for each initial monomial
ideal in,,,(I) < Clz, £1.

Let © be the sheaf of algebraic differential
operators on C”. A holonomic D-ideal I is called
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regular holonomic if the D-module D/ DI is regu-
lar holonomic in the sense of [9] or [2, Def. 11.3
(ii), p. 302].

Theorem 2.2. Let I be a regular holonomic
D-ideal and w any weight vector. Then
(2.3) rank(I) = rank(n_,,,(I)).

For the special case w = e and assuming A,
— Ay & Z as in Theorem 4.2 below, the identity
(2.3) is a consequence of [8, Theorem 1.1]. Our
proof of Theorem 2.2 in general is independent
of [8] and more elementary. It is based on
Theorem 2.1 and the construction of the canoni-
cal series solutions to 7 in the next section.

3. Series solutions with logarithms. Let [
be a regular holonomic D-ideal and w € R”"
generic. Then J: = in_,,,(I) is torus-fixed.
The artinian ideal J © C[6] is called the indicial
ideal of I with respect to w. Let V(J) = {8, ...,
B,} © C” denote the zero set of J. This set is fi-
nite since f is artinian. The vectors 3; are called
the exponents of I with respect to w.

The Grobner come of I containing w is the
open convex polyhedral cone

C,(I) ={w € R":in_, ,,(I) = J}.
This is a maximal cone in the restriction of the
Grobner fan GF (I) to {# + v = 0} . Its polar
dual C,(I)* is closed and strongly convex. It
consists of all ¥ € R” such that in_, (1) =]
implies v w” = 0. Let CL[C,(I)%]] be the ring
of formal power series f = X ,c,x" where c, €C
and u € C,(I)* N Z". Note that the nitial form
in,(f): = X,uumimma €l is well-defined,
since u-w > 0 for all u € C,(I)*\{0}.

Theorem 3.1. There are vank(I) many
C-linearly independent series in the ring

R=CIC, (DA™, ..., 27, log(x), ..., log(x,)]

which are annihilated by I and have a common do-
main of convergence in C”.

The weight vector w € R” defines a partial
order on the monomial basis of R:
(3.1) z%log(x)’ < z°log(x)*: © Re(w-a) < Re(w-c).
Here Re(w: a) denotes the real part of the com-
plex number w * a. Let g € R. The initial form
in,(g) is the finite sum of terms ¢,x°log(x)’ in
g minimal under (3.1).

Lemma 3.2. If g is awnnihilated by I then
in,(g) is annihilated by ] = in_,,,(I).

Let <, be the refinement of the partial
order (3.1) by the lexicographic order < on the
exponents (@, b) € C" D N" = R* @ N”. Each
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g € R has a unique initial monomial in<,(g) =
z%log (z)". Consider the following set of starting
monomials :

Start <,(I) : = {in<,(g) : g € R\{0} is annihi-
lated by I}.

We next construct the C-basis of canonical series
solutions to I with respect to <.

Theorem 3.3. The cardinality of Start_,,(I)
equals rank(I). For each x“log(x)’ € Start<,(I)
there is a unique element g € R\{0} with the fol-
lowing properties :

(@) g is annihilated by I ;

() in<,(g) = z°log(x)’;

(¢c) No starting monomial other than z’log (x)’
appears in the expansion of g.

4. Algorithmic Frobenius method. If a
torus-fixed D-ideal J is holonomic, then J is
artinian, and in this case,

(4.1) rank(J) = rank(D-]J) = dim (C[61/]).
Solutions in R to J are determined from the prim-
ary decomposition

J= N J,6—-p8.
Bev)

Here J; is an artinian ideal primary to the max-
imal ideal <@,, ..., 6,> in C[0]. A C-basis for
its orthogonal complement ,/,9l is derived from the
term order < by Grobner duality as in [10], [11].

Proposition 4.1. The canonical solutions to J
are x° pUlog(xy), ..., log(x,)) where B € V(J)
and p is in the C-basis of f; dual to the reduced
< -Grobuer basis of J,.

Let I be a regular holonomic D-ideal and w
€ R" generic. If g € R is a canonical solution of
I then in_,,, (g) is a canonical solution of J =
in_,,) (I) and hence computed by Proposition
4.1. Our goal is to reconstruct g from in._,,,,(g).
The following result is a consequence of our
algorithmic Frobenius method [15] and a gener-
alization of the method in [7]. The hypothesis A,
— Agr € Z in Theorem 4.2 is still unsatisfactory.
We hope to be able to remove it in the final ver-
sion of [15].

Let J be the torus fixed ideal in D¢, 8,
generated by I, = in._,,,(I) and 6, — 27_, w,6,.
Let b,(6,) be the generator of J N C[6,]. Consid-
er the primary decomposition J = N sevy ]w»xm
(6 — (B, 2y)) where A, = X7_, w,B,. Since w is
generic, we may assume that there exist one-to-
one correspondences between the points of V(J),
the points of V(I), and the roots A4 of by(s) = 0.
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We identify these points. Consider the C-vector
subspace JF = {p(@,, 8. ) |p € Jiup) of the
Weyl algebra over yu,, ..., t,, & We call it the
space of Frobemius jets with respect to the expo-
nent 8. We extend the term order < arbitrarily
to include the new variable 6,.

Theorem 4.2. Assume that the b-function
b,(s) is factored as
by(s) = I (s—2)" withAy— Ay € Z for B+ .

BeV(Iy

Let J5f. be the C-basis of the Frobenius jets J5*
which 1is dual to the reduced < -Grobner basis of
the primary ideal [Jg,,. For each exponent B €
V(I) one can  construct a  series g, €
C(u, e)IC,(I)EI1[[¢£]1] such that the collection
of derived series

lim lim x°p(x"t* g,(p, €; x, 1)),

=1 mem0 forall B € V(1) and p € Ji_,
equals the basis of canowical series solutions to I
with respect to <,
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