Gröbner deformations of regular holonomic systems

By Mutsumi SAITO,*) Bernd STURMFELS,**) and Nobuki TAKAYAMA***)
(Communicated by Heisuke HIRONAKA, M. J. A., Sept. 14, 1998)

1. Torus-fixed ideals in the Weyl algebra. This is a research announcement of results in the first part of our monograph [15]. Let $D = C \langle x_1, \ldots, x_n, \partial_1, \ldots, \partial_n \rangle$ denote the Weyl algebra with complex coefficients. Thus D is the free associative C-algebra on 2n generators modulo the relations $x_i x_j = x_j x_i$, $\partial_i \partial_j = \partial_j \partial_i$, $x_i \partial_j = \partial_j x_i - \delta_{ij}$. Left ideals in D are called D-ideals. They represent systems of linear partial differential equations with polynomial coefficients. The torus $(C^*)^n$ acts on the Weyl algebra by $\partial_i \mapsto t_i \partial_i$ and $x_i \mapsto t_i^{-1} x_i$ for $(t_1, \ldots, t_n) \in (C^*)^n$. We abbreviate $\theta_i = x_i \partial_i$. The set of elements in D which are fixed by $(C^*)^n$ equals the commutative polynomial subring $C[\theta] = C[\theta_1, \ldots, \theta_n]$.

Lemma 1.1. A D-ideal J is torus-fixed if and only if J is generated by (finitely many) elements of the form $x^a \cdot p(\theta) \cdot \hat{\partial}^b$ where $a, b \in \mathbb{N}^n$ and $p(\theta) \in \mathbb{C}[\theta]$.

Each $f \in D$ is written uniquely as a finite sum $f = \sum_{a,b \in \mathbb{N}^n} c_{ab} x^a \partial^b$ with $c_{ab} \in C$. Fix $u,v \in \mathbb{R}^n$ with $u+v \geq 0$. Then $\inf_{(u,v)}(f) \in D$ is the subsum of all terms $c_{ab} x^a \partial^b$ for which $u \cdot a + v \cdot b$ is maximal. For a D-ideal I we define the initial ideal $\inf_{(u,v)}(I)$ to be the C-vector space spanned by $\{\inf_{(u,v)}(f): f \in I\}$. If u+v>0 then $\inf_{(u,v)}(I)$ is generally not a D-ideal; it is an ideal in the commutative polynomial ring $gr(D) = C[x,\xi] = C[x_1,\ldots,x_n,\xi_1,\ldots,\xi_n]$. Generators for the initial ideal can be computed by the Weyl algebra version of Buchberger's Gröbner basis algorithm; see e.g. [3] and [6] for early treatments and [13] for a precise introduction and recent applications.

If u+v=0 then the initial ideal is a D-ideal. For $w\in {\bf R}^n$ we call ${\rm in}_{(-w,w)}(I)$ a Gröbner deformation of I. Specifically, if $w\in {\bf Z}^n$ then the D-ideal ${\rm in}_{(-w,w)}(I)$ is regarded as the limit of I under the one-parameter subgroup of $({\bf C}^*)^n$ defined by w.

Lemma 1.2. For generic $w \in \mathbb{R}^n$, the initial D-ideal $\operatorname{in}_{(-w,w)}(I)$ is torus-fixed.

Let $D^{\pm} := C\langle x_1^{\pm 1}, \ldots, x_n^{\pm 1}, \partial_1, \ldots, \partial_n \rangle$ be the ring of differential operators on $(C^*)^n$. For a D-ideal I define the commutative polynomial ideal $\tilde{I} := D^{\pm}I \cap C[\theta]$.

Proposition 1.3. If J is a torus-fixed D-ideal then $\tilde{J} \subseteq C[\theta]$ is generated by $p(\theta - b) \cdot \prod_{i=1}^{n} \prod_{j=1}^{b_i} (\theta_i + 1 - j)$ where $x^a \cdot p(\theta) \cdot \partial^b$ runs over a generating set of J.

2. Holonomic rank under Gröbner deformations. Abbreviate $e:=(1,1,\ldots,1)\in \mathbb{R}^n$. The ideal $\inf_{(0,e)}(I)$ in $C[x,\xi]$ is called the *characteristic ideal* of the *D*-ideal *I*. The *Fundamental Theorem of Algebraic Analysis* ([5],[12],[14]) states that each minimal prime of the characteristic ideal $\inf_{(0,e)}(I)$ has dimension $\geq n$. If $\inf_{(0,e)}(I)$ has dimension n then n is holonomic. In this case the following vector space dimension is finite and is called the holonomic rank of n:

(2.1) $\operatorname{rank}(I) = \dim_{\mathbb{C}(x)}(C(x)[\xi]/C(x)[\xi] \cdot \inf_{(0,e)}(I)).$ Here $C(x) = C(x_1, \ldots, x_n)$. The holonomic rank equals the dimension of the C-vector space of holomorphic solutions to I at any point outside the singular locus.

Theorem 2.1. Let I be a holonomic D-ideal and $w \in \mathbb{R}^n$. Then $\operatorname{in}_{(-w,w)}(I)$ is holonomic and (2.2) $\operatorname{rank}(\operatorname{in}_{(-w,w)}(I)) \leq \operatorname{rank}(I)$.

Our proof of Theorem 2.1 is based on a walk in the *Gröbner fan GF(I)* as defined in [1]. This fan decomposes the closed half space $\{u+v\geq 0\}$ of \mathbf{R}^{2n} into finitely many convex polyhedral cones, one for each initial monomial ideal $\inf_{(u,v)}(I) \subset C[x,\xi]$.

Let \mathfrak{D} be the sheaf of algebraic differential operators on \mathbb{C}^n . A holonomic D-ideal I is called

 $[\]ensuremath{^{*}}\xspace^{}$ Department of Mathematics, Hokkaido University, Sapporo, 060-0810.

^{**)} Department of Mathematics, University of California, Berkeley, CA 94720, U.S.A.; and Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502.

^{***)} Department of Mathematics, Kobe University, Kobe, 657-8501.

regular holonomic if the \mathfrak{D} -module $\mathfrak{D}/\mathfrak{D}I$ is regular holonomic in the sense of [9] or [2, Def. 11.3 (ii), p. 302].

Theorem 2.2. Let I be a regular holonomic D-ideal and w any weight vector. Then

 $(2.3) \quad rank(I) = rank(in_{(-w,w)}(I)).$

For the special case w = e and assuming $\lambda_{\beta} - \lambda_{\beta'} \notin \mathbf{Z}$ as in Theorem 4.2 below, the identity (2.3) is a consequence of [8, Theorem 1.1]. Our proof of Theorem 2.2 in general is independent of [8] and more elementary. It is based on Theorem 2.1 and the construction of the canonical series solutions to I in the next section.

3. Series solutions with logarithms. Let I be a regular holonomic D-ideal and $w \in \mathbb{R}^n$ generic. Then $J := \operatorname{in}_{(-w,w)}(I)$ is torus-fixed. The artinian ideal $\tilde{J} \subseteq C[\theta]$ is called the *indicial ideal* of I with respect to w. Let $V(J) = \{\beta_1, \ldots, \beta_p\} \subseteq C^n$ denote the zero set of \tilde{J} . This set is finite since \tilde{J} is artinian. The vectors β_i are called the *exponents* of I with respect to w.

The *Gröbner cone* of I containing w is the open convex polyhedral cone

 $C_w(I)=\{w'\in {\bf R}^n: \operatorname{in}_{(-w',w')}(I)=f\}.$ This is a maximal cone in the restriction of the Gröbner fan GF(I) to $\{u+v=0\}$. Its polar dual $C_w(I)^*$ is closed and strongly convex. It consists of all $\nu\in {\bf R}^n$ such that $\operatorname{in}_{(-w',w')}(I)=J$ implies $\nu\cdot w'\geq 0$. Let $C[[C_w(I)^*_Z]]$ be the ring of formal power series $f=\sum_u c_u x^u$ where $c_u\in C$ and $u\in C_w(I)^*\cap {\bf Z}^n$. Note that the initial form $\operatorname{in}_w(f):=\sum_{u:w\cdot u \text{ minimal }} c_u x^u$ is well-defined, since $u\cdot w>0$ for all $u\in C_w(I)^*\setminus\{0\}$.

Theorem 3.1. There are rank(I) many C-linearly independent series in the ring

 $R = C[[C_w(I)_{\mathbf{Z}}^{\mathbf{z}}]][x^{\beta_1}, \ldots, x^{\beta_p}, \log(x_1), \ldots, \log(x_n)]$ which are annihilated by I and have a common domain of convergence in \mathbb{C}^n .

The weight vector $w \in \mathbb{R}^n$ defines a partial order on the monomial basis of R:

(3.1) $x^a \log(x)^b \le x^c \log(x)^d$: $\Leftrightarrow Re(w \cdot a) \le Re(w \cdot c)$. Here $Re(w \cdot a)$ denotes the real part of the complex number $w \cdot a$. Let $g \in R$. The *initial form* $\operatorname{in}_w(g)$ is the finite sum of terms $c_{ab}x^a \log(x)^b$ in g minimal under (3.1).

Lemma 3.2. If g is annihilated by I then $\operatorname{in}_w(g)$ is annihilated by $J = \operatorname{in}_{(-w,w)}(I)$.

Let \leq_w be the refinement of the partial order (3.1) by the lexicographic order \leq on the exponents $(a, b) \in \mathbb{C}^n \oplus \mathbb{N}^n \simeq \mathbb{R}^{2n} \oplus \mathbb{N}^n$. Each

 $g \in R$ has a unique *initial monomial* in $\prec_w(g) = x^a \log(x)^b$. Consider the following set of *starting monomials*:

 $Start_{\prec_w}(I) := \{ in_{\prec_w}(g) : g \in R \setminus \{0\} \text{ is annihilated by } I \}.$

We next construct the C-basis of canonical series solutions to I with respect to \leq_w .

Theorem 3.3. The cardinality of $Start_{\prec w}(I)$ equals rank(I). For each $x^a \log(x)^b \in Start_{\prec w}(I)$ there is a unique element $g \in R \setminus \{0\}$ with the following properties:

(a) g is annihilated by I;

(b) $\operatorname{in}_{\leq w}(g) = x^{a} \log(x)^{b}$;

(c) No starting monomial other than $x^a \log(x)^b$ appears in the expansion of g.

4. Algorithmic Frobenius method. If a torus-fixed D-ideal J is holonomic, then \tilde{J} is artinian, and in this case,

(4.1) $rank(J) = rank(D \cdot \tilde{J}) = dim_{\mathbb{C}}(C[\theta]/\tilde{J})$. Solutions in R to J are determined from the primary decomposition

$$\tilde{J} = \bigcap_{\beta \in V(I)} J_{\beta}(\theta - \beta).$$

Here J_{β} is an artinian ideal primary to the maximal ideal $\langle \theta_1, \ldots, \theta_n \rangle$ in $C[\theta]$. A C-basis for its orthogonal complement J_{β}^{\perp} is derived from the term order \prec by *Gröbner duality* as in [10], [11].

Proposition 4.1. The canonical solutions to J are $x^{\beta} \cdot p(\log(x_1), \ldots, \log(x_n))$ where $\beta \in V(J)$ and p is in the C-basis of J_{β}^{\perp} dual to the reduced \prec -Gröbner basis of J_{β} .

Let I be a regular holonomic D-ideal and $w \in \mathbf{R}^n$ generic. If $g \in R$ is a canonical solution of I then $\mathrm{in}_{(-w,w)}(g)$ is a canonical solution of $J=\mathrm{in}_{(-w,w)}(I)$ and hence computed by Proposition 4.1. Our goal is to reconstruct g from $\mathrm{in}_{(-w,w)}(g)$. The following result is a consequence of our algorithmic Frobenius method [15] and a generalization of the method in [7]. The hypothesis $\lambda_\beta - \lambda_{\beta'} \notin \mathbf{Z}$ in Theorem 4.2 is still unsatisfactory. We hope to be able to remove it in the final version of [15].

Let J be the torus fixed ideal in $D \langle t, \partial_t \rangle$ generated by $I_0 = \operatorname{in}_{(-w,w)}(I)$ and $\theta_t - \sum_{i=1}^n w_i \theta_i$. Let $b_0(\theta_t)$ be the generator of $\tilde{J} \cap C[\theta_t]$. Consider the primary decomposition $\tilde{J} = \bigcap_{\beta \in V(I_0)} J_{(\beta,\lambda_\beta)}(\theta - (\beta,\lambda_\beta))$ where $\lambda_\beta = \sum_{i=1}^n w_i \beta_i$. Since w is generic, we may assume that there exist one-to-one correspondences between the points of V(J), the points of $V(I_0)$, and the roots λ_β of $b_0(s) = 0$.

of derived series

We identify these points. Consider the C-vector subspace $J_{\beta}^* = \{p(\partial_{\mu}, \partial_{\varepsilon}) \mid p \in J_{(\beta, \lambda_{\beta})}^{\perp}\}$ of the Weyl algebra over μ_1, \ldots, μ_n , ε . We call it the space of *Frobenius jets* with respect to the exponent β . We extend the term order \prec arbitrarily to include the new variable θ_r .

Theorem 4.2. Assume that the b-function $b_0(s)$ is factored as $b_0(s) = \prod_{\beta \in V(I_0)} (s - \lambda_\beta)^{\nu_\beta}$, with $\lambda_\beta - \lambda_{\beta'} \notin \mathbf{Z}$ for $\beta \neq \beta'$. Let $J_{\beta, \prec}^*$ be the **C**-basis of the Frobenius jets J_{β}^* which is dual to the reduced \prec -Gröbner basis of the primary ideal $J_{(\beta,\lambda_\beta)}$. For each exponent $\beta \in V(I_0)$ one can construct a series $g_\beta \in C(\mu, \varepsilon)[[C_w(I)^*]][[t]]$ such that the collection

 $\lim_{t\to 1} \lim_{\mu,\varepsilon\to 0} x^{\beta} p(x^{\mu} t^{\varepsilon} g_{\beta}(\mu, \varepsilon; x, t)),$ $\text{for all } \beta \in V(I_0) \text{ and } p \in J_{\beta,<}^*,$ equals the basis of canonical series solutions to Iwith respect to \prec_m .

References

- [1] A. Assi, F. J. Castro-Jiménez, and M. Granger: The standard fan of a *D*-module. preprint (1998).
- [2] A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, and F. Ehlers: Algebraic D-modules. Academic Press. Boston (1987).
- [3] F. Castro: Thèse de 3ème cycle. Université de Paris 7 (1984).
- [4] P. Deligne: Équations différentielles à points singuliers réguliers. Lecture Notes in Math., 163, Springer-Verlag (1970).
- [5] O. Gabber: The integrability of the characteristic variety. American Journal of Mathematics, 103, 445-468 (1981).

[6] A. Galligo: Some algorithmic questions on ideals of differential operators. EUROCAL'85, Springer Lecture Notes in Computer Science, 204, 413– 421 (1985).

Gröbner deformations of regular holonomic systems

- [7] S. Hosono, B. H. Lian, and S.-T. Yau: GKZ-generalized hypergeometric systems in mirror symmetry of Calabi-Yau hypersurfaces. Comm. Math. Phys., 182, 535-577 (1996).
- [8] M. Kashiwara: Vanishing cycle sheaves and holonomic systems of differential equations. Algebraic Geometry (eds. M. Raynaud and T. Shioda). Springer Lecture Notes in Mathematics, 1016, 134— 142 (1982).
- [9] M. Kashiwara and T. Kawai: On holonomic systems of microdifferential equations. III-Systems with regular singularities, Publ. RIMS. Kyoto Univ., 17, 813-979 (1981).
- [10] T. Mora: Gröbner duality and multiple points in linearly general position. Proc. Amer. Math. Soc., 125, 1273-1282 (1997).
- [11] B. Mourrain: Isolated points, duality and residues. Algorithms for algebra, Eindhoven (1996). J. Pure Appl. Algebra, 117/118, 469-493 (1997).
- [12] T. Oaku: Computation of the characteristic variety and the singular locus of a system of differential equations with polynomial coefficients. Japan J. Industr. Appl. Math., 11, 485-497 (1994).
- [13] T. Oaku and N. Takayama: Algorithms for D-modules-Restrictions, tensor product, localization and algebraic local cohomology groups. Math. AG/9805006 (1998).
- [14] M. Sato, T. Kawai, and M. Kashiwara: Microfunctions and pseudodifferential equations. Springer Lecture Notes in Mathematics, 287 (1973).
- [15] M. Saito, B. Sturmfels, and N. Takayama: Gröbner deformations of hypergeometric differential equations (in preparation).