On Terai's conjecture*)

By Zhenfu CAO and Xiaolei DONG
Department of Mathematics, Harbin Institute of Technology, Harbin 150001, P. R. China
(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1998)

Abstract

Terai presented the following conjecture: If $a^{2}+b^{2}=c^{2}$ with $a>0, b>0$, $c>0, \operatorname{gcd}(a, b, c)=1$ and a even, then the diophantine equation $x^{2}+b^{m}=c^{n}$ has the only positive integral solution $(x, m, n)=(a, 2,2)$. In this paper we prove that if (i) b is a prime power, $c \equiv 5(\bmod 8)$, or (ii) $c \equiv 5(\bmod 8)$ is a prime power, then Terai's conjecture holds.

1. Introduction. In 1956, Jeśmanowicz [4] conjectured that if a, b, c are Pythagorean triples, i.e. positive integers a, b, c satisfying $a^{2}+$ $b^{2}=c^{2}$, then the Diophantine equation

$$
a^{x}+b^{y}=c^{z}
$$

has the only positive integral solution (x, y, z) $=(2,2,2)$. When a, b, c take some special Pythagorean triples, it was discussed by Sierpinski [14], C. Ko [5-10], J. R. Chen [2], Dem'janenko [3] and others.

In 1993, as an analogue of above conjecture, Terai [16] presented the following:

Conjecture. If $a^{2}+b^{2}=c^{2}$ with $\operatorname{gcd}(a, b$, $c)=1$ and a even, then the Diophantine equation (1)

$$
x^{2}+b^{m}=c^{n}
$$

has the only positive integral solution (x, m, n) $=(a, 2,2)$.

Terai proved that if b and c are primes such that (i) $b^{2}+1=2 c$, (ii) $d=1$ or even if $b \equiv$ $1(\bmod 4)$, where d is the order of a prime divisor of $[c]$ in the ideal class group of $\boldsymbol{Q}(\sqrt{-b})$, then the conjecture holds. Further, he proved that if $b^{2}+1=2 c, b<20, c<200$, then conjecture holds. Recently, X. Chen and M. Le [11] proved that if $b \not \equiv 1(\bmod 16), b^{2}+1=2 c, b$ and c are both odd primes, then the conjecture holds, and P. Yuan and J. Wang [17] proved that if $b \equiv \pm 3(\bmod 8)$ is a prime, then Terai's conjecture holds.

In this paper, we consider Terai's conjecture when b or c is prime power. Then we prove the following :

[^0]Theorem 1. If b is a prime power, $c \equiv$ $5(\bmod 8)$, then Terai's conjecture holds.

Corollary. If $2 k+1$ is a prime, $k \equiv 1$ or $2(\bmod 4)$, then the Diophantine equation

$$
x^{2}+(2 k+1)^{m}=\left(2 k^{2}+2 k+1\right)^{n}
$$

has the only positive integral solution (x, m, n) $=\left(2 k^{2}+2 k, 2,2\right)$.

Theorem 2. If $c \equiv 5(\bmod 8)$ is a prime power, then Terai's conjecture holds.
2. Some lemmas. We use the following lemmas to prove our theorems.

Lemma 1. If a, b, c are positive integers satisfying $a^{2}+b^{2}=c^{2}$, where $2 \mid a, \operatorname{gcd}(a, b, c)$ $=1$, then

$$
a=2 s t, b=s^{2}-t^{2}, c=s^{2}+t^{2}
$$

where $s>t>0, \operatorname{gcd}(s, t)=1$ and $s \not \equiv$ $t(\bmod 2)$.

Lemma 2 (Störmer [15]). The Diophantine equation

$$
x^{2}+1=2 y^{n}
$$

has no solutions in integers $x>1, y \geq 1$ and n odd ≥ 3.

Lemma 3 (Ljunggren [12]). The Diophantine equation

$$
x^{2}+1=2 y^{4}
$$

has the only positive integral solutions $(x, y)=$ $(1,1)$ and $(239,13)$.

Lemma 4 (Cao [1]). If p is an odd prime and the Diophantine equation

$$
x^{p}+1=2 y^{2}(|y|>1)
$$

has integral solution x, y, then $2 p \mid y$.
Now, we assume that a, b, c are Pythagorean triples with $\operatorname{gcd}(a, b, c)=1$ and $2 \mid a$.

Lemma 5. If $c \equiv 5(\bmod 8)$, then we have $(b / c)=(c / b)=-1$,
where $(* / *)$ denotes Jacobi's symbol.

Proof. From Lemma 1, we have

$$
a=2 s t, b=s^{2}-t^{2}, c=s^{2}+t^{2}
$$

where $s>t>0$, gcd $(s, t)=1$ and $s \not \equiv$ $t(\bmod 2)$. Since $c \equiv 5(\bmod 8)$, we have

$$
\begin{gathered}
(c / b)=(b / c)=\left(s^{2}-t^{2} / s^{2}+t^{2}\right)=\left(\left(s^{2}+t^{2}\right)-2 t^{2} / s^{2}+t^{2}\right) \\
=\left(-2 t^{2} / s^{2}+t^{2}\right)=\left(-1 / s^{2}+t^{2}\right)\left(2 / s^{2}+t^{2}\right)\left(t^{2} / s^{2}+t^{2}\right)=-1
\end{gathered}
$$

Thus, the proof is completed.
Lemma 6. If $c \equiv 5(\bmod 8)$, then the integral solutions of equation (1) satisfy $2|m, 2| n$.

Proof. Suppose equation (1) has positive integral solution (x, m, n). We have

$$
x^{2} \equiv c^{n}(\bmod b), x^{2} \equiv-b^{m}(\bmod c)
$$

Thus, by Lemma 5 we have

$$
\begin{gathered}
1=\left(c^{n} / b\right)=(c / b)^{n}=(-1)^{n} \\
1=\left(-b^{m} / c\right)=(-1 / c)(b / c)^{m}=(-1)^{m}
\end{gathered}
$$

and so $2|m, 2| n$. The lemma is proved.
3. Proof of theorems. Proof of Theorem 1. Suppose (x, m, n) is a positive integral solution of equation (1). By Lemma 6, put $m=2 m_{1}, n=$ $2 n_{1}$, where m_{1} and n_{1} are some positive integers. Then equation (1) gives

$$
\begin{equation*}
x^{2}+b^{2 m_{1}}=c^{2 n_{1}} \tag{2}
\end{equation*}
$$

Since $\operatorname{gcd}(a, b, c)=1, a^{2}+b^{2}=c^{2}, 2 \mid a$, we have $\operatorname{gcd}(b, c)=1$ and $2 \times b c$. Thus from (2) and Lemma 1, we have
(3) $x=2 u v, b^{m_{1}}=u^{2}-v^{2}, c^{n_{1}}=u^{2}+v^{2}$, where $u>v>0, \operatorname{gcd}(u, v)=1$ and $u \not \equiv$ $v(\bmod 2)$. From $b^{m_{1}}=u^{2}-v^{2}$ in (3), we have

$$
\begin{equation*}
u-v=1, u+v=b^{m_{1}} \tag{4}
\end{equation*}
$$

since b is a prime power and gcd $(u-v, u+$ $v)=1$. From (4) we have

$$
u=\left(b^{m_{1}}+1\right) / 2, v=\left(b^{m_{1}}-1\right) / 2
$$

Substituting these into $c^{n_{1}}=u^{2}+v^{2}$ in (3), we have

$$
\begin{equation*}
2 c^{n_{1}}=b^{2 m_{1}}+1, c>b>1 \tag{5}
\end{equation*}
$$

If $n_{1}>2$, then without loss of generality, we may assume that $4 \mid n_{1}$, or $p \mid n_{1}(p$ is an odd prime). By Lemma 2, (5) is impossible if $p \mid n_{1}$. If $4 \mid n_{1}$, then by Lemma 3, (5) gives

$$
c^{n_{1} / 4}=13, b^{m_{1}}=239
$$

so $m_{1}=1, b=239, c=13$, a contradiction since $c>b$.

If $n_{1}=2$, then by Lemma 4, (5) gives $m_{1}=$ $2^{e}, e \geq 0$. When $e=0$, from $2 c^{2}=b^{2}+1$ we have $b>c$, a contradiction. When $e>0$, equation (5) gives

$$
2 c^{2}=\left(b^{m_{1} / 2}\right)^{4}+1, c>b>1
$$

which is impossible (see [13], p. 18).
If $n_{1}=1$, then (5) gives $2 c=b^{2 m_{1}}+1$. On the other hand, since b is a prime power, from a^{2}
$+b^{2}=c^{2}, \operatorname{gcd}(a, b, c)=1$ and $2 \mid a$, we have

$$
c-a=1, c+a=b^{2}
$$

and so $2 c=b^{2}+1$. Thus $m_{1}=1$. The Theorem 1 is proved.

Proof of Theorem 2. Suppose (x, m, n) is a positive integral solution of equation (1). From Lemma 6 , we have $m=2 m_{1}, n=2 n_{1}$, where m_{1} and n_{1} are some positive integers. By Lemma 1 , we have $b=u^{2}-v^{2}, c=u^{2}+v^{2}$, and (1) gives
(6) $x=2 s t,\left(u^{2}-v^{2}\right)^{m_{1}}=s^{2}-t^{2}$,

$$
\left(u^{2}+v^{2}\right)^{n_{1}}=s^{2}+t^{2}
$$

where $u>v>0$, gcd $(u, v)=1, u \not \equiv v(\bmod$ $2)$, and $s>t>0, \operatorname{gcd}(s, t)=1$ and $s \not \equiv t(\bmod$ 2). From $\left(u^{2}-v^{2}\right)^{m_{1}}=s^{2}-t^{2}$, we see that

$$
s+t=b_{1}^{m_{1}}, s-t=b_{2}^{m_{1}}, u^{2}-v^{2}=b_{1} b_{2}
$$

where $\operatorname{gcd}\left(b_{1}, b_{2}\right)=1, b_{1}$ and b_{2} are some positive integers. Hence

$$
s=\left(b_{1}^{m_{1}}+b_{2}^{m_{1}}\right) / 2, t=\left(b_{1}^{m_{1}}-b_{2}^{m_{1}}\right) / 2
$$

Substituting these into $\left(u^{2}+v^{2}\right)^{n_{1}}=s^{2}+t^{2}$ in
(6), we have
(7) $2\left(u^{2}+v^{2}\right)^{n_{1}}=b_{1}^{2 m_{1}}+b_{2}^{2 m_{1}}, \operatorname{gcd}\left(b_{1}, b_{2}\right)=1$.

When $2 \mid n_{1}$, from (7) we see that $b_{1}^{2 m_{1}}+b_{2}^{2 m_{1}} \equiv$ $2(\bmod 16)$ since $\left(u^{2}+v^{2}\right)^{n_{1}} \equiv 1(\bmod 8)$. But $b_{1} b_{2}=u^{2}-v^{2} \equiv \pm 3(\bmod 8)$ since $u^{2}+v^{2} \equiv$ $5(\bmod 8)$. If $2 \nless m_{1}$ then $b_{1}^{2 m_{1}}+b_{2}^{2 m_{1}} \equiv 1+9 \equiv$ $10(\bmod 16)$, a contradiction. If $2 \mid m_{1}$, then equation (7) gives that the equation

$$
2 z^{2}=x^{4}+y^{4}, \operatorname{gcd}(x, y)=1
$$

has positive integral solution $z=\left(u^{2}+v^{2}\right)^{n_{1} / 2}>$ 1 , which is impossible (see [13], p. 18).

When $2 \times n_{1}$, from (7) we have $b_{1}^{2 m_{1}}+b_{2}^{2 m_{1}}$ $\equiv 10(\bmod 16)$. So $2 \nless m_{1}$. If $m_{1}>1$, then $p \mid m_{1}$, p is an odd prime. From (7), we have

$$
\begin{aligned}
\left(u^{2}\right. & \left.+v^{2}\right)^{n_{1}}=\frac{\left(b_{1}^{2 m_{1} / p}\right)^{p}+\left(b_{2}^{2 m_{1} / p}\right)^{p}}{2} \\
& =\frac{b_{1}^{2 m_{1} / p}+b_{2}^{2 m_{1} / p}}{2} \cdot \frac{\left(b_{1}^{2 m_{1} / p}\right)^{p}+\left(b_{2}^{2 m_{1} / p}\right)^{p}}{b_{1}^{2 m_{1} / p}+b_{2}^{2 m_{1} / p}}
\end{aligned}
$$

Since $u^{2}+v^{2}$ is a prime power, gcd
$\left(\frac{b_{1}^{2 m_{1} / p}+b_{2}^{2 m_{1} / p}}{2}, \frac{\left(b_{1}^{2 m_{1} / p}\right)^{p}+\left(b_{2}^{2 m_{1} / p}\right)^{p}}{b_{1}^{2 m_{1} / p}+b_{2}^{2 m_{1} / p}}\right)=1$ or p, and $p \| \frac{\left(b_{1}^{2 m_{1} / p}\right)^{p}+\left(b_{2}^{2 m_{1} / p}\right)^{p}}{b_{1}^{2 m_{1} / p}+b_{2}^{2 m_{1} / p}}$ if $u^{2}+v^{2}$ is a power of p. Thus we have $\left(b_{1}^{2 m_{1} / p}+b_{2}^{2 m_{1} / p}\right) / 2=$ 1 , which is impossible.

Thus $m_{1}=1$. Then we show that $n_{1}=1$. If $b_{1}, b_{2}>1$, then we have

$$
u^{2 n_{1}}<2\left(u^{2}+v^{2}\right)^{n_{1}}=b_{1}^{2}+b_{2}^{2} \leq b_{1}^{2} b_{2}^{2}=\left(u^{2}-v^{2}\right)^{2}<u^{4} .
$$

Since $2 \nless n_{1}$, we obtain $n_{1}=1$.

If $b_{1}=1$ or $b_{2}=1$, then we have $u^{2 n_{1}}<2\left(u^{2}+v^{2}\right)^{n_{1}}=\left(u^{2}-v^{2}\right)^{2}+1<u^{4}$.
Since $2 \Varangle n_{1}$, we obtain $n_{1}=1$.
This completes the proof of Theorem 2 .
Acknowledgements. This paper was finished two years ago. The proof of " $n_{1}=1$ " in proof of Theorem 2 was more complex at that time. Now the proof is simplified according to referee's report. The authors would like to thank the referee for his valuable suggestions.

References

[1] Z. Cao: On the Diophantine equation $x^{2 n}-D y^{2}=$ 1. Proc. Amer. Math. Soc., 98(1), $11-16$ (1986).
[2] J. R. Chen: On Jeśmanowicz' conjecture Sichuan Daxue Xuebao, 2, 19-25 (1962) (in Chinese).
[3] V. A. Dem'janenko: On Jeśmanowicz' problem for Pythagorean numbers. Izv. Vysš. Ǔ̌ebn. Zaved. Matematika, 48(5), 52-56 (1965) (in Russian).
[4] L. Jeśmanowicz': Some remarks on Pythagorean numbers. Wiakom. Mat., ser. 2, 1(2), 196-202 (1956).
[5] C. Ko: On Pythagorean numbers. Sichuan Daxue Xuebao, 1, 73-80 (1958) (in Chinese).
[6] C. Ko: On Jeśmanowicz' conjecture. Sichuan Daxue Xuebao, 2, 31-40 (1958) (in Chinese).
[7] C. Ko: On Pythagorean numbers $2 n+1,2 n(n+1)$,
$2 n(n+1)+1$. Sichuan Daxue Xuebao, 3, 9-13 (1963) (in Chinese).
[8] C. Ko: On Pythagorean numbers $2 n+1,2 n(n+1)$, $2 n(n+1)+1$ (III). Sichuan Daxue Xuebao, 4, 11-24 (1964) (in Chinese).
[9] C. Ko: On Diophantine equation $\left(a^{2}-b^{2}\right)^{x}+(2 a b)^{y}$ $=\left(a^{2}+b^{2}\right)^{z}$. Sichuan Daxue Xuebao, 3, 25-34 (1959) (in Chinese).
[10] C. Ko and Q. Sun: On Pythagorean numbers $2 n+1$, $2 n(n+1), 2 n(n+1)+1$ (II). Sichuan Daxue Xuebao, 3, 1-6 (1964) (in Chinese).
[11] X. Chen and M. Le: A note on Terai's conjecture concerning Pythagorean numbers. Proc. Japan Acad., 74A, 80-81 (1998).
[12] W. Ljunggren: Zur Theorie der Gleichung $x^{2}+1$ $=D y^{4}$. Avh. Norske Vid. Akad. Oslo, 5, 1-27 (1942).
[13] L. J. Mordell : Diophantine Equations. Academic Press (1969).
[14] W. Sierpinski: On the equation $3^{x}+4^{y}=5^{z}$. Wiakom. Mat., ser. 2, 1(2), 194-195 (1956).
[15] C. Störmer : L'equation $m \arctan 1 / x+n \arctan 1 /$ $y=k \pi / 4$. Bull. Soc. Math. France, 27, 160-170 (1899).
[16] N. Terai : The Diophantine equation $x^{2}+q^{m}=p^{n}$. Acta Arith., 63(4), 351-358 (1993).
[17] P. Yuan and J. Wang: On the Diophantine equation $x^{2}+b^{y}=c^{z}$. Acta Arith., 84, 145-147 (1998).

[^0]: *) Supported by the National Natural Science Foundation of China and the Heilongjiang Provincial Natural Science Foundation.

 1991 Mathematics Subject Classification: 11D61.

