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1. Introduction. Let k be a number field
and p be a prime number, and let k = k, C k, C

-Ck,C - - C k., be the cyclotomic
Z,-extension of k. We denote by u, (k), 2, (k)
the Iwasawa invariants of the cyclotomic
Z,-extension of k. It is well-known that g, (k)
vanishes for any abelian number field k.
Greenberg's conjecture claims that both g, (k)
and A, (k) are zero for any totally real number
field k. In this paper, we shall prove the follow-
ing

Theorem 1. Let p and q be prime numbers
such that p =3 mod8, q= — 1mod 8, p*
3 mod 16, g # — 1 mod 16. Then the Iwasawa in-
variant 2,(Q(/pq)) is zero. Let p, q and 7 be prime
numbers such that p, ¢ = 3 mod 8, p, q # 3 mod
16. » = 1 mod 4, r # 1 mod 8. Then the Iwasawa
invariant 2,(Q(Vpqr)) is zero if there is no element
a i the unit group of k, = Q(pgr, v2) such that
Ny a= —1

Let p and £ be odd prime numbers such that
P = 1mod# Let k be a subfield of degree £ of
Q (L,02) in which p and € ramify. Here {,¢: is a
primitive péz—th root of unity. We will prove the
following

Theorem 2. Let p and € be odd prime num-
bers such that p = 1mod ¥, p # 1 mod 2% Then
the Iwasawa invariants pe (k) and 20 (k) vanish,
where k is the number field constructed above.

Now let p be a prime number and k be a
totally real number field and K be a real cyclic
extension of degree p over k, which satisfies K
Nk, = k. Let Sg_,. = {w: prime ideal of K, |w
is prime to p and ramified in K_/k..}.

In [1], Iwasawa proved a “plus-version” of
Kida’'s formula. In [2], the following theorem is
obtained by using the above Iwasawa’s formula.

Theorem 3. Let p be a prime number, k a
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totally real number field of finite degree and K a
real cyclic extension of degree p over k. Assume that
k. has only one prime ideal lying over p and that
the class number of k is not divisible by p. Then,
the following are equivalent :

(1) ,(K) = 0.

(2) For any prime ideal w of K., which is prime
to p and ramified in K,/ k., the order of ideal class
of w is prime to p.

In this paper, we apply Theorem 3 to prove
Theorem 1 and Theorem 2. We state another ing-
redient needed here. Let K be a cyclic extension
of a number field F. Let G = Gal (K/F). For
each valuation v of F we let ¢(v) be the ramifica-
tion index of v in K/F. We put e(K/F) = I,e(v).
We let E denote the group of units, Cg the
group of ideal classes, C,? the set of ambiguous
ideal class groups, and C’z the set of ideal class
groups containing ambiguous ideal of K, respec-
tively. We will use the following “genus formula”:

Theorem 4. Let K/F be a cyclic extension
with Galois group G. Then
1 ICG|_ h(F)e(K/F)

O N =K. FIE,: N, K* N E,)"

C,G|_ h(F)e(K/F)

Kl 7 [K: F1(Ep: No,cEp) -

Proof. See [3, p. 307]. L

2. Proof of theorems. Before
Theorem 1, we need the following

Lemma 1. Let D be a square free positive in-
teger such that there exists a prime number q| D
such that ¢ = — 1 mod 8. Let k = Q (/D). Then
there is no element a in the first layer k, in the cyc-
lotomic Z,-extension of k such that

proving

Ny o (@) = — 1.
, -1 2
Proof. First note that (——) = — 1 and ()
= 1. Suppose that there is an « in k; such that
(2) Ny o (@) = — 1.

Write « = x + yv2 + zvyD + wy2D, where x,
Y, 2 and w are in Q.
Then by (2) we have
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3) (@+w2)'—De+w2)=-1
Clearing the denominators of (3), we have

(4) &+ 26"+ m’ = D(* + 2d%), ab = Dcd
for some integers a, b, ¢, d and m. If q divides
m, we see that g divides @ and b since g divides
m. Since D is square free, we see that ¢ divides ¢
and d. Hence we may assume that ¢ is relatively
prime to m. Reducing both sides of (4) by mod g,
we have

(5) a+ 20 +m’ =0, ab = 0O mod gq.

If @ =0modg, then we have m’ + 2b° =
0 mod ¢. This is a contradiction since — 2 is not
a square mod ¢. If b = 0 mod ¢, then we have a’
+ m® = 0 mod g. This is also a contradiction
since — 1 is not a square mod ¢. This completes
the proof. []

Lemma 2. Let D be a squave free positive in-
teger such that theve exist a prime number D | D
such that p = 3mod 8. Let k= Q (VD). Then
there is no o n k, such that

Nyjo @ =% (2 — 1),

Proof. We omit the proof since the proof is
similar to Lemma 1.

Proof of Theorem 1. First we prove the
first part of Theorem 1. By assumptions on p and
g, we have
(6) Skw/Qe, = {p, Q15 qz},
where p is the prime ideal of k; lying over p and
45, 9, are prime ideals of k; lying over ¢. Note
that Eq = <+ 1> (/2 — 1)% Hence e (k,/Q,)
=8 and [Eq : Ny k¥ N Eq] = 4 by Lemma 1
and 2. This completes the proof of the first part
by Theorem 3 and Theorem 4.

Now let k = Q(/pqr), where p, q and 7 are
prime numbers such that p, ¢ = 3 mod 8, p, ¢ F
3mod16. »r = 1mod4, »# 1 mod 8. By these
assumptions on p, g and 7, we have

Sese. = {p, g, v}
Our conclusion follows immediately from Lemma
2, Theorem 3 and Theorem 4. []
Remark 1. Actually the prime ideals v, q;, q,
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of k, are principal. Let p and g be prime numbers
such  that p,q= 3mod 38, p, q F 3 mod 16.
Then we can prove similarly that the Iwasawa n-
variants A,(Q(/p)) and 2,(QLVpq)) are zero, [5]

contains another proof of this. It can be shown that

there always exists an « 1im Kk, such that
N o (@ = — 1.
Example 1. Let k= Q[ V/5%11%43 ), or

Q (/37 % 11 * 43). By using number theovetic pack-
ages “KASH”, we can see that there is no unit @ in
ky such that Ny ,q (@) = — 1. Hence 2,(k) = 0.

Example 2. Let k= Q(/37 %59 %43).
Again, by using KASH, we see that there is a unit
a in k; such that Ny o (@) = — 1. In this case,
we can not decide whether A,(k) is zero or not. Note
that the class numbers of k and k| are 2 and 8, re-
spectively.

Proof of Theorem 2. Note that S, o =
{p}. Let £, and p, be prime ideals of k, above £
and p, respectively. We see that #; is unramified
in the extension k;/ @, since k;/k is unramified
everywhere. Hence p, is principal in k; by the
genus formula. This completes the proof of
Theorem 2. []
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