On the λ -invariants of totally real fields

By Jangheon OH*)

KIAS, 207-43 Cheongryangri-dong, Dongdaemun-gu, Seoul 130-012, Korea (Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1998)

1. Introduction. Let k be a number field and p be a prime number, and let $k = k_0 \subseteq k_1 \subseteq \cdots \subseteq k_n \subseteq \cdots \subseteq k_\infty$ be the cyclotomic \mathbf{Z}_p -extension of k. We denote by $\mu_p(k)$, $\lambda_p(k)$ the Iwasawa invariants of the cyclotomic \mathbf{Z}_p -extension of k. It is well-known that $\mu_p(k)$ vanishes for any abelian number field k. Greenberg's conjecture claims that both $\mu_p(k)$ and $\lambda_p(k)$ are zero for any totally real number field k. In this paper, we shall prove the following

Theorem 1. Let p and q be prime numbers such that $p \equiv 3 \mod 8$, $q \equiv -1 \mod 8$, $p \not\equiv 3 \mod 16$, $q \not\equiv -1 \mod 16$. Then the Iwasawa invariant $\lambda_2(\mathbf{Q}(\sqrt{pq}))$ is zero. Let p, q and r be prime numbers such that p, $q \equiv 3 \mod 8$, p, $q \not\equiv 3 \mod 16$. $r \equiv 1 \mod 4$, $r \not\equiv 1 \mod 8$. Then the Iwasawa invariant $\lambda_2(\mathbf{Q}(\sqrt{pqr}))$ is zero if there is no element α in the unit group of $k_1 = \mathbf{Q}(\sqrt{pqr}, \sqrt{2})$ such that $N_{k,/Q}$, $\alpha = -1$.

Let p and ℓ be odd prime numbers such that $p \equiv 1 \mod \ell$. Let k be a subfield of degree ℓ of $Q(\zeta_{p\ell^2})$ in which p and ℓ ramify. Here $\zeta_{p\ell^2}$ is a primitive $p\ell^2$ -th root of unity. We will prove the following

Theorem 2. Let p and ℓ be odd prime numbers such that $p \equiv 1 \mod \ell$, $p \not\equiv 1 \mod \ell^2$. Then the Iwasawa invariants $\mu_{\ell}(k)$ and $\lambda_{\ell}(k)$ vanish, where k is the number field constructed above.

Now let p be a prime number and k be a totally real number field and K be a real cyclic extension of degree p over k, which satisfies $K \cap k_{\infty} = k$. Let $S_{K_{\infty}/k_{\infty}} = \{w : \text{prime ideal of } K_{\infty} \mid w \text{ is prime to } p \text{ and ramified in } K_{\infty}/k_{\infty} \}$.

In [1], Iwasawa proved a "plus-version" of Kida's formula. In [2], the following theorem is obtained by using the above Iwasawa's formula.

Theorem 3. Let p be a prime number, k a

totally real number field of finite degree and K a real cyclic extension of degree p over k. Assume that k_{∞} has only one prime ideal lying over p and that the class number of k is not divisible by p. Then, the following are equivalent:

- $(1) \lambda_{\mathfrak{p}}(K) = 0.$
- (2) For any prime ideal w of K_{∞} which is prime to p and ramified in K_{∞}/k_{∞} , the order of ideal class of w is prime to p.

In this paper, we apply Theorem 3 to prove Theorem 1 and Theorem 2. We state another ingredient needed here. Let K be a cyclic extension of a number field F. Let G = Gal(K/F). For each valuation v of F we let e(v) be the ramification index of v in K/F. We put $e(K/F) = \prod_v e(v)$. We let E_K denote the group of units, C_K the group of ideal classes, C_K^G the set of ambiguous ideal class groups, and $C_K^{\prime G}$ the set of ideal class groups containing ambiguous ideal of K, respectively. We will use the following "genus formula":

Theorem 4. Let K/F be a cyclic extension with Galois group G. Then

(1)
$$|C_K^G| = \frac{h(F)e(K/F)}{[K:F](E_F:N_{K/F}K^* \cap E_F)}.$$

$$C_K^G| = \frac{h(F)e(K/F)}{[K:F](E_F:N_{K/F}E_K)}.$$

Proof. See [3, p. 307]. □

2. Proof of theorems. Before proving Theorem 1, we need the following

Lemma 1. Let D be a square free positive integer such that there exists a prime number $q \mid D$ such that $q \equiv -1 \mod 8$. Let $k = Q(\sqrt{D})$. Then there is no element α in the first layer k_1 in the cyclotomic \mathbb{Z}_2 -extension of k such that

$$N_{k_1/Q_1}(\alpha) = -1.$$

Proof. First note that $(\frac{-1}{q}) = -1$ and $(\frac{2}{q}) = 1$. Suppose that there is an α in k_1 such that $(2) \qquad N_{k_1/Q_1}(\alpha) = -1$.

Write $\alpha = x + y\sqrt{2} + z\sqrt{D} + w\sqrt{2D}$, where x, y, z and w are in Q.

Then by (2) we have

^{*)} Supported by KIAS. I would like to thank Prof. K. Komatsu for reading this paper and giving many valuable comments.

 $(x + y\sqrt{2})^2 - D(z + y\sqrt{2})^2 = -1$ (3)Clearing the denominators of (3), we have (4) $a^2 + 2b^2 + m^2 = D(c^2 + 2d^2)$, ab = Dcdfor some integers a, b, c, d and m. If q divides m, we see that q divides a and b since q divides m. Since D is square free, we see that q divides cand d. Hence we may assume that q is relatively

prime to m. Reducing both sides of (4) by mod q,

 $a^{2} + 2b^{2} + m^{2} \equiv 0$, $ab \equiv 0 \mod q$.

we have

If $a \equiv 0 \mod q$, then we have $m^2 + 2b^2 \equiv$ $0 \mod q$. This is a contradiction since -2 is not a square mod q. If $b \equiv 0 \mod q$, then we have a^2 $+m^2 \equiv 0 \mod q$. This is also a contradiction since -1 is not a square mod q. This completes the proof.

Lemma 2. Let D be a square free positive integer such that there exist a prime number $b \mid D$ such that $p \equiv 3 \mod 8$. Let $k = \mathbf{Q}(\sqrt{D})$. Then there is no α in k_1 such that

$$N_{k_1/Q_1}(\alpha) = \pm (\sqrt{2} - 1).$$

Proof. We omit the proof since the proof is similar to Lemma 1.

Proof of Theorem 1. First we prove the first part of Theorem 1. By assumptions on p and q, we have

$$(6) S_{k_{\infty}/Q_{\infty}} = \{\mathfrak{p}, \mathfrak{q}_1, \mathfrak{q}_2\},$$

(6) $S_{k_{\infty}/\mathbb{Q}_{\infty}}=\{\mathfrak{p},\,\mathfrak{q}_{1},\,\mathfrak{q}_{2}\},$ where \mathfrak{p} is the prime ideal of k_{1} lying over p and $\mathfrak{q}_{\scriptscriptstyle 1}$, $\mathfrak{q}_{\scriptscriptstyle 2}$ are prime ideals of $k_{\scriptscriptstyle 1}$ lying over q. Note that $E_{\mathrm{Q}_1} = \langle \pm 1 \rangle \left(\sqrt{2} - 1\right)^{\mathrm{Z}}$. Hence $e\left(k_1/Q_1\right)$ = 8 and $[E_{\mathrm{Q}_1}\colon N_{k_1/\mathrm{Q}_1}k_1^*\cap E_{\mathrm{Q}_1}]=4$ by Lemma 1 and 2. This completes the proof of the first part by Theorem 3 and Theorem 4.

Now let $k = Q(\sqrt{pqr})$, where p, q and r are prime numbers such that $p, q \equiv 3 \mod 8, p, q \not\equiv$ $3 \mod 16$. $r \equiv 1 \mod 4$, $r \not\equiv 1 \mod 8$. By these assumptions on p, q and r, we have

$$S_{k_{\mathfrak{m}}/\mathbb{Q}_{\mathfrak{m}}} = \{\mathfrak{p}, \mathfrak{q}, \mathfrak{r}\}.$$

Our conclusion follows immediately from Lemma 2, Theorem 3 and Theorem 4.

Remark 1. Actually the prime ideals \mathfrak{p} , \mathfrak{q}_1 , \mathfrak{q}_2

of k_1 are principal. Let p and q be prime numbers $p, q \equiv 3 \mod 8, p, q \not\equiv 3 \mod 16.$ Then we can prove similarly that the Iwasawa invariants $\lambda_2(\mathbf{Q}(\sqrt{p}))$ and $\lambda_2(\mathbf{Q}[\sqrt{pq}))$ are zero, [5] contains another proof of this. It can be shown that there always exists an α in k_1 such that $N_{k_1/0_1}(\alpha) = -1$.

Example 1. Let $k = Q[\sqrt{5*11*43}]$, or $Q(\sqrt{37*11*43})$. By using number theoretic packages "KASH", we can see that there is no unit α in k_1 such that $N_{k_1/Q_1}(\alpha) = -1$. Hence $\lambda_2(k) = 0$.

2. Let $k = \mathbf{Q}(\sqrt{37*59*43})$. Again, by using KASH, we see that there is a unit α in k_1 such that $N_{k_1/Q_1}(\alpha) = -1$. In this case, we can not decide whether $\lambda_2(k)$ is zero or not. Note that the class numbers of k and k_1 are 2 and 8, respectively.

Proof of Theorem 2. Note that $S_{k_{-}/Q_{-}} =$ $\{\mathfrak{p}\}$. Let ℓ_1 and \mathfrak{p}_1 be prime ideals of k_1 above ℓ and p, respectively. We see that ℓ_1 is unramified in the extension k_1/Q_1 since k_1/k is unramified everywhere. Hence \mathfrak{p}_1 is principal in k_1 by the genus formula. This completes the proof of Theorem 2.

References

- [1] K. Iwasawa: Riemann-Hurwitz formula and p-adic Galois representation for number fields. Tôhoku Math. J., 33, 263-288 (1981).
- [2] T. Fukuda, K. Komatsu, M. Ozaki, and H. Taya: On Iwasawa λ_n -invariants of relative real cyclic extensions of degree p, Tokyo J. Math., 20, 489-494 (1997).
- [3] S. Lang: Cyclotomic Fields I and II. Graduate Texts in Mathematics, Springer-Verlag, New York (1990).
- [4] S. Lang: Algebraic Number Theory. Graduate Texts in Mathematics, Springer-Verlag, New York (1986).
- [5] M. Ozaki and H. Taya: On the Iwasawa λ_2 -invariants of certain families of real quadratic fields. Manuscripta Math., 94, 437-444 (1997).