On the vanishing of Iwasawa invariants of certain cyclic extensions of Q with prime degree II By Takashi FUKUDA Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba 275-0005 (Communicated by Shokichi IYANAGA, M. J. A., Dec. 14, 1998) Key words: Capitulation; Iwasawa invariants. 1. Introduction. Throughout the paper, we fix an odd prime number ℓ . For a prime number p congruent to one module ℓ , we denote by k_p the unique subfield of $Q(\zeta_p)$ of degree ℓ , where ζ_p is a primitive p-th root of unity. Let $F_\ell = \mathbb{Z}/\ell\mathbb{Z}$ and let $(\frac{a}{p})_\ell$ be the ℓ -th power residue symbol for an integer a. In [2], we proved the following theorem. Theorem 1.1 (Corollary 2.3 in [2]). Let p and q be distinct prime numbers congruent to one modulo ℓ satisfying $(\frac{\ell}{p})_{\ell} \neq 1$, $(\frac{p}{q})_{\ell} \neq 1$, $q \not\equiv 1 \pmod{\ell^2}$. Let $x, y, z \in \mathbf{F}_{\ell}$ such that $(\frac{q\ell^x}{p})_{\ell} = 1$, $(\frac{\ell p^y}{q})_{\ell} = 1$ and $pq^z \equiv 1 \pmod{\ell^2}$. If $xyz \neq -1$, then for any subfield k of $k_p k_q$ of degree ℓ , the Iwasawa invariants $\lambda_{\ell}(k)$ and $\mu_{\ell}(k)$ are both zero. In this paper, we investigate the case $(\frac{p}{q})_{\ell} = 1$. **2. Theorems.** Let p and q be distinct prime numbers congruent to one modulo ℓ . We assume that $p \not\equiv 1 \pmod{\ell^2}$, $q \not\equiv 1 \pmod{\ell^2}$, $(\frac{\ell}{p})_\ell \not\equiv 1$ and $(\frac{q}{p})_\ell \equiv (\frac{p}{q})_\ell = 1$. We treat the case $(\frac{\ell}{q})_\ell = 1$ and the case $(\frac{\ell}{q})_\ell \not\equiv 1$ separately. In the case $(\frac{\ell}{q})_\ell = 1$, we have the following theorem **Theorem 2.1.** Assume that $(\frac{\ell}{q})_{\ell} = 1$. Let k be a subfield of $k_{p}k_{q}$ of degree ℓ which is different from k_{p} and k_{q} . If $p \notin E_{k}k^{\times \ell}$, then $\lambda_{\ell}(k)$ and $\mu_{\ell}(k)$ are both zero. Here E_k denotes the unit group of k. In the case $(\frac{\ell}{q})_{\ell} \neq 1$, we need to specify k explicitly. $$\sigma = \left(\frac{k_p/Q}{\ell}\right), \ au = \left(\frac{k_q/Q}{\ell}\right)$$ be Frobenius automorphisms. We identify the Galois group $G(k_{\mathfrak{p}}/Q)$ with $G(k_{\mathfrak{p}}k_{\mathfrak{q}}/k_{\mathfrak{q}})$ and $G(k_{\mathfrak{q}}/Q)$ with $G(k_{\mathfrak{p}}k_{\mathfrak{q}}/k_{\mathfrak{p}})$ canonically. Then $G(k_{\mathfrak{p}}k_{\mathfrak{q}}/Q)=<\sigma$, $\tau>$. If k is a subfield of $k_{\mathfrak{p}}k_{\mathfrak{q}}$ with degree ℓ which is different from $k_{\mathfrak{p}}$ and $k_{\mathfrak{q}}$, then $G(k_{\mathfrak{p}}k_{\mathfrak{q}}/k)=<\sigma\tau^{i}>$ for some $i\in F_{\ell}^{\times}$. In this case, we have the following theorem. **Theorem 2.2.** Assume that $(\frac{\ell}{q})_{\ell} \neq 1$. Let k be a subfield of $k_p k_q$ which corresponds to $\langle \sigma \tau^i \rangle$ for some $i \in \mathbf{F}_{\ell}^{\times}$ and z the element of $\mathbf{F}_{\ell}^{\times}$ such that $pq^z \equiv 1 \pmod{\ell^2}$. If $pq^{z/i} \notin E_k k^{\times \ell}$, then $\lambda_{\ell}(k)$ and $\mu_{\ell}(k)$ are both zero. **3. Proof.** We shall prove Theorem 2.2. For a Galois extension k of \mathbf{Q} , we denote by A(k) the ℓ -primary part of the ideal class group of k and B(k) the subgroup of A(k) consisting of elements which are invariant under the action of $G(k/\mathbf{Q})$. Let $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_s$ be the prime ideals of k which are ramified in k/\mathbf{Q} . If k/\mathbf{Q} is a cyclic extension of degree ℓ , then B(k) is an ℓ -elementary abelian group of rank s-1 generated by $cl(\mathfrak{p}_1), cl(\mathfrak{p}_2), \ldots, cl(\mathfrak{p}_s)$. Let Q_1 be the subfield of $Q(\zeta_{\ell^2})$ of degree ℓ and put $$\eta = \left(\frac{Q_1/Q}{q}\right).$$ Then $G(Q_1/Q) = \langle \eta \rangle$. Let \mathfrak{p}_p (resp. \mathfrak{p}_q) be the prime ideal of k lying over p (resp. q). Since $p \not\equiv 1 \pmod{\ell^2}$ and $q \not\equiv 1 \pmod{\ell^2}$, \mathfrak{p}_p and \mathfrak{p}_q inert in kQ_1/k . So, if we show that both \mathfrak{p}_p and \mathfrak{p}_q become principal in kQ_1 , we have $\lambda_\ell(k) = \mu_\ell(k) = 0$ from Corollary 3.6 of [3]. In order to show that both \mathfrak{p}_p and \mathfrak{p}_q become ¹⁹⁹¹ Mathematics Subject Clappifications. Primary 11R23. principal in kQ_1 , we use a subfield F of $K = k_p k_q Q_1$. We identify $G(k_p/Q)$ with $G(K/k_q Q_1)$, $G(k_q/Q)$ with $G(K/k_p Q_1)$ and $G(Q_1/Q)$ with $G(K/k_p k_q)$ canonically. We consider σ , τ and η as elements of G(K/Q). In this situation, the above k corresponds to $< \sigma \tau^i$, $\eta >$. Let F be a subfield of kQ_1 of degree ℓ which is different from k and Q_1 . Such F corresponds to $< \sigma \tau^i$, $\sigma \eta^i >$ for some $t \in F_\ell^*$. Let \mathfrak{P}_p , \mathfrak{P}_q and \mathfrak{P}_ℓ be the prime ideals of F lying over p, q and ℓ respectively. Since $\mathfrak{P}_p = \mathfrak{p}_p$, $\mathfrak{P}_q = \mathfrak{p}_q$ in kQ_1 and \mathfrak{P}_ℓ is principal in kQ_1 , we see that if $\mathfrak{P}_p^a \mathfrak{P}_q^b \mathfrak{P}_\ell^c$ is principal in kQ_1 . Now, since $$\left(\frac{K/F}{\mathfrak{P}_{p}}\right)\Big|_{k_{q}} = \left(\frac{k_{q}/\mathbf{Q}}{p}\right) = 1 = \tau^{0}, \left(\frac{K/F}{\mathfrak{P}_{p}}\right)\Big|_{Q_{1}} = \left(\frac{\mathbf{Q}_{1}/\mathbf{Q}}{p}\right) = \eta^{-z},$$ we have $$\left(\frac{\mathit{K/F}}{\mathfrak{P}_{b}}\right) = (\sigma\tau^{i})^{0}(\sigma\eta^{t})^{-z/t} = \sigma^{-z/t}\eta^{-z}.$$ Similarly we have $$\left(\frac{\mathit{K/F}}{\mathfrak{P}_{g}}\right) = \left(\sigma \tau^{i}\right)^{-1/t} \left(\sigma \eta^{t}\right)^{1/t} = \tau^{-i/t} \eta$$ and $$\left(\frac{K/F}{\mathfrak{P}_{\ell}}\right) = (\sigma \tau^{i})^{1/i} (\sigma \eta^{t})^{1-1/i} = \sigma \tau \eta^{t-t/i}.$$ We identify G(K/Q) with $oldsymbol{F}_{\ell}^3$ by the correspondence $$\sigma \leftrightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \tau \leftrightarrow \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ \eta \leftrightarrow \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$ Then the matrix $$M(i, t) = \begin{pmatrix} -z/t & 0 & 1\\ 0 & -i/t & 1\\ -z & 1 & t - t/i \end{pmatrix}$$ describes $\left(\frac{K/F}{\mathfrak{P}_p}\right)$, $\left(\frac{K/F}{\mathfrak{P}_q}\right)$ and $\left(\frac{K/F}{\mathfrak{P}_\ell}\right)$. Since the rank of $M(i,\,t)$ is two for all $i,\,t\in F_\ell^\times$, we have $G\left(K/F\right)=<\left(\frac{K/F}{\mathfrak{P}_p}\right)$, $\left(\frac{K/F}{\mathfrak{P}_q}\right)$, $\left(\frac{K/F}{\mathfrak{P}_\ell}\right)$ >. Furthermore, since K/F is an abelian unramified extension of degree ℓ^2 , K is the ℓ -part of the genus field of F. Hence we have the following lemma from Corollary 1.2 in [2]. **Lemma 3.1.** For any subfield F of K of degree ℓ in which p, q and ℓ are ramified, we have $A(F) = B(F) \simeq F_{\ell}^2$. Furthermore, for an ideal $\mathfrak a$ of F, $\mathfrak a$ is principal in F if and only if $\left(\frac{K/F}{\mathfrak a}\right) = 1$. From Lemma 3.1 we see immediately that $\mathfrak{P}_p\mathfrak{P}_q^{z/i}\mathfrak{P}_\ell^{z/i}$ is principal in F. Therefore $\mathfrak{P}_p\mathfrak{P}_q^{z/i}$ is principal in kQ_1 . Since $B(k) = \langle \operatorname{cl}(\mathfrak{p}_p), \operatorname{cl}(\mathfrak{p}_q) \rangle$ is of order ℓ , there is a non-trivial relation between \mathfrak{P}_p and \mathfrak{P}_q in k. Hence, if $\mathfrak{P}_p\mathfrak{P}_q^{z/i}$ is not principal in k, both \mathfrak{P}_p and \mathfrak{P}_q become principal in kQ_1 . Since $\mathfrak{P}_p\mathfrak{P}_q^{z/i}$ is principal in k if and only if $pq^{z/i} \in E_k k^{*\ell}$, we have proved Theorem 2.2. The proof of Theorem 2.1 is similar. So we omit it. **4. Example.** We give an example for $\ell = 3$. Readers are suggested to refer to [1] about cyclic cubic fields. Let p = 7 and q = 223. We are in the situation of Theorem 2.2. Then $pq^2 \equiv 1 \pmod{9}$ and $$\sigma = \left(\frac{k_p/\mathbf{Q}}{3}\right), \ \tau = \left(\frac{k_q/\mathbf{Q}}{3}\right).$$ Let θ_p be a root of X^3-X^2-2X+1 . Then $k_p=Q(\theta_p)$ and θ_p^σ is equal to $-1-\theta_p+\theta_p^2$ or $2-\theta_p^2$. Since 3 does not split in k_p/Q , the Frobenius automorphism σ satisfies $\theta_p^\sigma\equiv\theta_p^3$ (mod 3). So we have $\theta_p^\sigma=-1-\theta_p+\theta_p^2$ and $\theta_p^{\sigma^2}=2-\theta_p^2=1-\theta_p-\theta_p^\sigma$. Similarly if we let θ_q be a root of $X^2-X^2-73X+256$, then $k_q=Q(\theta_q)$, $\theta_p^\tau=26-(5/2)\theta_q-(1/2)\theta_q^2$ and $\theta_q^{\tau^2}=25+(3/2)\theta_q+(1/2)\theta_q^2=1-\theta_q-\theta_p^\tau$. Let k be a subfield of k_pk_q of degree 3 which is different from k_p and k_q . Then k corresponds to $<\sigma\tau>$ or $<\sigma\tau^2>$. On the other hand, it is known that there are two cyclic cubic fields in which 3 and 227 are ramified. Such a field is the splitting field of $f_1(X) = X^3 - X^2 - 520X + 925$ or $f_2(X) = X^3 - X^2 - 520X - 2197$. We explain how to determine the polynomial corresponding to $< \sigma \tau >$. Since $\{1, \theta_p, \theta_p^\sigma\}$ and $\{1, \theta_q, \theta_q^\tau\}$ are integral bases of k_p and k_q respectively and since the discriminants of k_p and k_q are relatively prime, $\{1, \theta_p, \theta_p^\sigma, \theta_q, \theta_p \theta_q, \theta_p^\sigma, \theta_q, \theta_p^\tau, \theta_p^\sigma, \theta_q^\tau\}$ forms an integral basis of $k_p k_q$ over \boldsymbol{Z} . We let \boldsymbol{Z}^9 be an $G(k_p k_q/\boldsymbol{Q})$ module via correspondence $(x_i) \leftrightarrow x_0 + x_1\theta_{\mathfrak{p}} + x_2\theta_{\mathfrak{p}}^{\sigma} + x_3\theta_{\mathfrak{q}} + x_4\theta_{\mathfrak{p}}\theta_{\mathfrak{q}} + x_5\theta_{\mathfrak{p}}^{\sigma}\theta_{\mathfrak{q}} + x_6\theta_{\mathfrak{q}}^{\tau} + x_7\theta_{\mathfrak{p}}\theta_{\mathfrak{q}}^{\tau} + x_8\theta_{\mathfrak{p}}^{\sigma}\theta_{\mathfrak{q}}^{\tau}.$ Then the actions of σ and τ for $x = (x_i)$ are as follows: $$x^{\sigma} = \begin{pmatrix} x_0 + x_2 \\ -x_2 \\ x_1 - x_2 \\ -x_3 + x_5 \\ -x_5 \\ x_4 - x_5 \\ x_6 + x_8 \\ -x_8 \\ x_7 - x_8 \end{pmatrix}, x^{\tau} = \begin{pmatrix} x_0 + x_6 \\ x_1 + x_7 \\ x_2 + x_8 \\ -x_6 \\ -x_7 \\ -x_8 \\ x_3 - x_6 \\ x_4 - x_7 \\ x_5 - x_8 \end{pmatrix}, x^{\sigma \tau} = \begin{pmatrix} x_0 + x_2 + x_6 + x_8 \\ -x_2 - x_8 \\ x_1 - x_2 + x_7 - x_8 \\ -x_6 - x_8 \\ x_3 \\ -x_7 + x_8 \\ x_3 + x_5 - x_6 - x_8 \\ -x_5 + x_8 \\ x_4 - x_5 - x_7 + x_8 \end{pmatrix}$$ Therefore, if we put $$A = egin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 \ 0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 1 & 0 & -1 & -1 & 1 \ 0 & 0 & 0 & 0 & 1 & -1 & 0 & -1 & 1 \ \end{pmatrix},$$ then we have $x^{\sigma\tau} = x$ if and only if Ax = x. It is easy to see that $$\{x \in \mathbf{Z}^9 \mid Ax = x\} = \mathbf{Z} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \oplus \mathbf{Z} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ -1 \\ 1 \\ -2 \\ -1 \end{pmatrix} \oplus \mathbf{Z} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ -1 \\ -2 \\ 0 \\ 1 \\ -1 \end{pmatrix}.$$ So if we put $\alpha = \theta_p - \theta_p \theta_q + \theta_p^{\sigma} \theta_q + \theta_q^{\tau} - 2\theta_p \theta_q^{\tau} - \theta_p^{\sigma} \theta_q^{\tau}$, then we have $\alpha^{\sigma \tau} = \alpha$. Let θ be a root of $f_1(X)$ or $f_2(X)$. We can test whether $\alpha \in \mathbf{Q}(\theta)$ as follows. We see that $\theta^{\sigma} \neq \theta$ because $\theta \not\in k_q$. Hence $\{1, \theta, \theta^{\sigma}\}$ forms an integral basis of $\mathbf{Q}(\theta)$ over \mathbf{Z} . If α is contained in $\mathbf{Q}(\theta)$, there exist integers x_i such that $x_0 + x_1\theta + x_2\theta^{\sigma} = \alpha$ and we can obtain x_i by solving a linear equation (1) $$\begin{pmatrix} 1 & \theta & \theta^{\sigma} \\ 1 & \theta^{\sigma} & \theta^{\sigma^{2}} \\ 1 & \theta^{\sigma^{2}} & \theta \end{pmatrix} \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} \alpha \\ \alpha^{\sigma} \\ \alpha^{\sigma^{2}} \end{pmatrix}$$ approximately. Hence, if the solutions of (1) are not integers, then $\alpha \notin Q(\theta)$. If we let θ be a root of $f_1(X)$ and define θ^{σ} to be $71/3 - (3/5)\theta - (1/15)\theta^2$, then we obtain x_i which are close to integers and get $\alpha = \theta$ by rounding x_i to integers. In other cases, x_i are not integers. Hence we can conclude that $<\sigma\tau>$ corresponds to $f_1(X)$ and $<\sigma\tau^2>$ corresponds to $f_2(X)$. It is easy to calculate the unit group E_k and it is a routine work to test whether a rational number is contained in $E_k k^{\times 3}$. Let k_i be the splitting field of $f_i(X)$. We have $3 \cdot 223^2 \not\in E_{k_1} k_1^{\times 3}$ and $3 \cdot 223 \in E_{k_2} k_2^{\times 3}$. Therefore $\lambda_3(k_1) = 0$. We do not know whether $\lambda_3(k_2)$ is zero. - 5. Corrigendum of [2]. In the previous paper [2], we proved Corollary 2.3 using Lemma 3.2. But, after publication, we found that our proof for Lemma 3.2 includes some gaps. So we give here another proof of Corollary 2.3 without using Lemma 3.2. We use the same notations as in [2]. There exists the unique subfield k of $k_p k_q$ in which ℓ splits. It is enough to show that $\lambda_\ell(k) = \mu_\ell(k) = 0$. In the case $p \not\equiv 1 \pmod{\ell^2}$, \mathfrak{p}_p and \mathfrak{p}_q inert in the cyclotomic \mathbf{Z}_{ℓ} -extension of k and become principal in $k\mathbf{Q}_1$. So we have $\lambda_\ell(k) = \mu_\ell(k) = 0$ from Corollary 3.6 of [3]. On the other hand, we can handle the case $p \equiv 1 \pmod{\ell^2}$ by Theorem 1 of [4]. - **6. Tables.** In the case $\ell=3$, we checked the conditions of Theorems 2.1 and 2.2 for all p and q such that pq<10000. We summarize our results as Tables I and II. There are two cyclic cubic fields k in which two prime numbers p and q are ramified. Such k is given as the splitting field of $$X^{3} - X^{2} + \frac{1 - pq}{3}X - \frac{1 - 3pq + pqu}{27}$$ where u and v are integers satisfying $4pq = u^2 + 27v^2$, $u \equiv 2 \pmod{3}$, $u \equiv v \pmod{2}$ and v > 0. When $(\frac{\ell}{q})_{\ell} \neq 1$, one of these corresponds to $< \sigma \tau >$ and the other corresponds to $< \sigma \tau^2 >$. For such k, we have $p^a q^b \in E_k k^{\times^3}$ for some pair of integers a and b which satisfies $a \not\equiv 0 \pmod{3}$ or $b \not\equiv 0 \pmod{3}$. We notice that $p^a q^b \in E_k k^{\times^3}$ implies $p^c q^d \not\in E_k k^{\times^3}$ for all pairs (c, d) such that $(c, d) \not\equiv (a, b)$, $(2a, 2b) \pmod{3}$ because B(k) is a cyclic group of order 3 generated by cl (\mathfrak{p}_p) and $\mathrm{cl}(\mathfrak{p}_q)$. In Table II, z is the element of F_3 such that $pq^z \equiv 1 \pmod{9}$. The asterisks in Tables I and II mean that we can apply none of Theorems 2.1 and 2.2. | | | Table | Ι. | Т | he | case | $(\frac{\ell}{a})_{\ell} =$ | = 1 | | | | _ | 211 | 367 | _ | 430 6 | 8 | 1 (|) | • | -25 | 107 | 1 | 0 | * | |----------|------|--------------|----|---|----|----------------|-----------------------------|---------|-------|---|----------------|---|------|-------|-----|--------|-----|----------|-------|---|-----------------------------|------------|------------|----------|--------------------------| | þ | q | и | v | | _ | $\lambda_3(k)$ | u | v | a | h | $\lambda_3(k)$ | - | 409 | 193 | - | 559 1 | 1 | 0 1 | | 0 | -154 | 104 | 0 | 1 | 0 | | <u> </u> | 103 | -73 | 1 | | 1 | 0 | 8 | 14 | ***** | 1 | 0 | - | 13 | 6079 | - | 415 7 | '3 | 1 2 |) | 0 | 395 | 77 | 1 | 2 | 0 | | 7 | 853 | -139 | 13 | 0 | 1 | 0 | 104 | 22 | 0 | 1 | 0 | | 31 | 2713 | | 125 10 | 19 | 1 (|) | * | 287 | 97 | 1 | 0 | * | | 13 | 499 | -1 | 31 | 1 | 1 | 0 | 161 | | 1 | 1 | 0 | | 823 | 103 | - | 478 6 | 64 | 1 | | 0 | 413 | 79 | 1 | 1 | 0 | | | 1021 | -169 | | | | | | 1
12 | 1 | | | | 139 | 619 | İ | 74 11 | 2 | 1 1 | | 0 | 317 | 95 | 1 | 1 | 0 | | 7 | | | 1 | 1 | l | 0 | 155 | 13 | | 1 | 0 | | 7 | 12391 | - | -589 | 1 | 1 1 | | 0 | 545 | 43 | 1 | 1 | 0 | | 13 | 619 | -79 | 31 | 0 | l | 0 | 164 | 14 | 0 | 1 | 0 | | 43 | 2029 | | 65 11 | 3 | 0 1 | | 0 | 551 | 41 | 0 | 1 | 0 | | 43 | 193 | 11 | 35 | 0 | 1 | 0 | 173 | 11 | 0 | 1 | 0 | | 7 | 13063 | - | | _ | 1 2 |) | 0 | 533 | 55 | 1 | 2 | 0 | | 13 | 853 | -34 | 40 | 1 | 0 | , | 209 | 5 | 1 | 0 | | | 607 | 151 | | | | 1 | | 0 | 506 | 64 | 1 | 1 | 0 | | 7 | 2029 | -160 | 34 | 0 | l | 0 | 83 | 43 | 0 | 1 | 0 | | 139 | 661 | _ | | | 1 (|) | | -523 | 59 | 1 | 0 | | | 241 | 61 | -211 | 23 | 0 | 1 | 0 | 194 | 28 | 0 | 1 | 0 | | 31 | 3067 | | | | 1 : | | 0 | 605 | 23 | 1 | 1 | 0 | | 277 | 61 | -175 | 37 | 1 | 0 | • | 149 | 41 | l | 0 | • | | 1429 | 67 | | -25 11 | | 1 (|) | | 380 | 94 | 1 | 0 | | | 7 | 2617 | -76 | 50 | 1 | 0 | • | 167 | 41 | 1 | 0 | • | | 97 | 997 | 1 | -67 11 | | 0 : | ,
 | 0 | 257 | 109 | 1 | 1 | 0 | | 283 | 67 | -1 | 53 | 1 | 1 | 0 | 161 | 43 | 1 | 1 | 0 | | 7 | 13831 | 1 | | | 0 . | | 0 | 365 | 97 | 1 | 0 | * | | 313 | 61 | -58 | 52 | 1 | 2 | 0 | 23 | 53 | 1 | 2 | 0 | | 223 | 439 | | 230 11 | | 0 : | | 0 | 554 | 56 | 0 | 1 | 0 | | 31 | 619 | -277 | 1 | 1 | 1 | 0 | 209 | 35 | 1 | 1 | 0 | | | | | | | | | . | | | | 0 | • | | 7 | 3067 | -274 | 20 | 1 | 1 | 0 | 293 | 1 | 1 | 1 | 0 | | 1471 | 67 | l l | 271 10 | | 1 (| | , | -109 | 119 | | | ٥ | | 7 | 3109 | -295 | 1 | 1 | 1 | 0 | 272 | 22 | 1 | 2 | 0 | _ | 1627 | 61 | | 121 11 | | | | 0 | | 121 | | | 0 | | 7 | 3319 | -265 | 29 | 1 | 1 | 0 | 302 | 8 | 1 | 1 | 0 | | | | Та | ble [] | [. | Th | ес | ase (| $(\frac{\ell}{q})_{\ell} =$ | ≠ 1 | | | | | 349 | 67 | -133 | 53 | 1 | 0 | • | -52 | 58 | 1 | 0 | • | | | | | | | < στ : | | | $\frac{q}{\parallel}$ | | στ2 | > | ····· | | 7 | 3373 | -211 | 43 | 1 | 2 | 0 | 113 | 55 | 1 | 2 | 0 | | | a | | ., | | | |) (1) | | | | | 1 (14) | | 43 | 643 | -322 | 16 | 1 | 1 | 0 | 2 | 64 | 1 | 1 | 0 | _ | P 7 | q | 2 | 10 | | <i>a</i> | 2 | $\lambda_3(k)$ | <i>u</i> | | | <u>b</u> | $\frac{\lambda_3(k)}{0}$ | | 13 | 2131 | -268 | 38 | 1 | 0 | • | -187 | 53 | 1 | 0 | • | | 7 | 223 | 2 | -13 | 1 | | | | 41 | | 5 I
1 1 | 1 | 0 | | 211 | 151 | -79 | 67 | 0 | 1 | 0 | 326 | 28 | 0 | 1 | 0 | | 7 | 337 | 1 | 92 | | 6 1 | l | | -97 | | 1 1 | 1 | | | 31 | 1093 | -280 | 46 | 1 | 2 | 0 | 368 | 2 | 1 | 2 | 0 | | 7 | 421 | 2 | 104 | | 6 1 | 1 | 0 | -85 | | | 1 | | | 7 | 4957 | -328 | 34 | 1 | 2 | 0 | 239 | 55 | 1 | 2 | 0 | | 13 | 229 | 2 | -1 | 2 | | 1 | 0 | -109 | | | 1 | • | | 13 | 2803 | 116 | 70 | 1 | 2 | 0 | 359 | 25 | 1 | 2 | 0 | | 7 | 463 | 1 | 83 | 1 | | 1 | | -106 | | 8 1 | 1 | 0 | | 7 | 5839 | -337 | 43 | 0 | 1 | 0 | 230 | 64 | 1 | 0 | • | | 7 | 673 | 2 | 113 | 1 | | 0 | 0 | -76 | | | 1 | 0 | | 409 | 103 | -1 | 79 | 1 | 1 | 0 | 404 | 14 | 1 | 1 | 0 | | 7 | 769 | 1 | -43 | | | 1 | 0 | 92 | | 2 (| l | 0 | | 283 | 151 | -385 | 29 | 1 | 1 | 0 | -223 | 67 | 1 | 1 | 0 | | 13 | 421 | 1 | 47 | | | 1 | • | -142 | | 8 1 | 1 | 0 | | 7 | 6271 | -391 | 29 | 1 | 1 | 0 | 419 | 1 | 1 | 1 | 0 | | 79 | 97 | 2 | -148 | 1 | 8 1 | 1 | 0 | -178 | | 1 1 | 1 | • | | 7 | 6637 | -223 | 71 | 1 | 0 | | 344 | 50 | 1 | 0 | | | 31 | 349 | 1 | 47 | 3 | 9 1 | 2 | 0 | 101 | 3 | 5 1 | 2 | • | | 13 | 3739 | 161 | 79 | 0 | 1 | 0 | 404 | 34 | 0 | 1 | 0 | | 13 | 859 | 2 | -181 | 2 | 1 1 | 1 | 0 | 116 | 3 | 4 1 | 0 | 0 | | 7 | 7027 | -202 | 76 | 1 | 0 | | 41 | | 1 | 0 | • | | 31 | 373 | 2 | -163 | | | 1 | 0 | 215 | | 1 1 | 1 | • | | 331 | 151 | -274 | 68 | 1 | 0 | | 293 | 65 | 1 | | | | 7 | 1723 | 1 | -169 | 2 | 7 1 | 1 | • | 209 |) 1 | 3 1 | 1 | 0 | | 13 | 4057 | -259 | 73 | 1 | 0 | | 389 | 47 | 1 | 0 | | | 79 | 157 | 1 | 173 | 2 | 7 1 | 2 | 0 | 65 | 5 4 | 1 1 | 1 | 0 | | 877 | 61 | -70 | 88 | 1 | 2 | 0 | 11 | 89 | 1 | 2 | 0 | | 7 | 1777 | 1 | 209 | 1 | 5 1 | 0 | 0 | -223 | } | 1 1 | 1 | 0 | | 31 | 1759 | -343 | | 1 | | 0 | 467 | | 1 | | 0 | | 13 | 1201 | 2 | 242 | 1 | 2 1 | 0 | 0 | 53 | 3 4 | 7] | 0 | 0 | | 907 | 61 | -436 | | 1 | | • | 455 | | 1 | | • | | 7 | 2239 | 2 | -22 | 4 | 8 1 | 0 | 0 | 113 | 3 4 | 3] | 0 | 0 | | 907
7 | 7951 | -436
-421 | | 1 | | 0 | 470 | 8 | 1 | | 0 | | 7 | 2311 | 2 | 50 | 4 | 8 1 | 2 | • | -139 |) 4 | 1 1 | 2 | 0 | | | | -421 -211 | 83 | | | | | 62 | 1 | | | | 43 | 409 | 1 | 11 | 5 | 1 1 | 1 | • | -259 |) 1 | 1 1 | 1 | 0 | | 7 | 8233 | | | | | 0 | 356 | | | | 0 | | 13 | 1483 | 1 | 83 | 5 | 1 1 | 1 | • | -268 | 3 1 | 4 1 | 1 | 0 | | 7 | 8527 | -358 | | 1 | | 0 | 209 | | 1 | | 0 | | 43 | 457 | 2 | 176 | | | 2 | | -256 | | | 2 | 0 | | 409 | 151 | 92 | 94 | | | 0 | 497 | 1 | 1 | | 0 | | 7 | 3037 | 1 | 281 | | 5 1 | | 0 | -232 | | | 2 | | | 7 | 9421 | -400 | 62 | | 1 | 0 | 491 | 29 | 0 | | 0 | | 7 | 3163 | 1 | 29 | | 7 1 | | 0 | 83 | | | 0 | 0 | | 31 | 2131 | 101 | 97 | | 1 | 0 | 263 | 85 | 0 | | 0 | | 79 | 283 | 1 | 245 | | 3 1 | | | 299 | | | 1 | 0 | | 7 | 9619 | -202 | 92 | | 1 | 0 | 365 | 71 | 0 | | 0 | | 13 | 1741 | 2 | 53 | | 7 1 | | 0 | -298 | | | 1 | | | 157 | 439 | -520 | | 1 | | 0 | 128 | 98 | | 2 | 0 | | 13 | 1789 | 1 | -151 | | 1 0 | | 0 | -259 | | | 1 | ٥ | | 31 | 2383 | -430 | 64 | | | 0 | 542 | 8 | 1 | | 0 | | 79 | 337 | 1 | 137 | | 7 1 | | 0 | -52 | | | 2 | | | 31 | 2389 | -523 | 29 | 1 | 0 | • | 287 | 89 | 1 | 0 | • | _ | 7 | 3823 | 2 | -139 | | 7 1 | | • | 239 | | | 2 | 0 | | | | | | | | | | | | | | - | | 9049 | L L | 100 | J | , 1 | 4 | *************************************** | 1 400 | , 4 | <i>U</i> , | - 4 | U | | 7 | 3877 | 2 | -328 | 6 | 1 | 0 | 0 | 293 | 29 | 1 | 0 | 0 | |-----|------|----------|------|----|---|---|---|------|-----|----------|---|---| | 7 | 3919 | 1 | 218 | 48 | 0 | 1 | 0 | -295 | 29 | 0 | 1 | 0 | | 79 | 349 | 2 | -301 | 27 | 1 | 0 | 0 | -328 | 10 | 0 | 1 | 0 | | 13 | 2137 | 2 | -118 | 60 | 1 | 2 | • | -307 | 25 | 1 | 2 | 0 | | 7 | 4129 | 2 | 167 | 57 | 1 | 0 | 0 | -265 | 41 | 1 | 0 | 0 | | 97 | 313 | 2 | -319 | 27 | 1 | 1 | 0 | -346 | 8 | 1 | 1 | • | | 7 | 4507 | 2 | 302 | 36 | 0 | 1 | 0 | -211 | 55 | 0 | 1 | 0 | | 79 | 409 | 1 | -331 | 27 | 0 | 1 | 0 | -196 | 58 | 0 | 1 | 0 | | 7 | 4621 | 1 | 29 | 69 | 1 | 1 | • | -160 | 62 | 1 | 1 | 0 | | 97 | 337 | 1 | 47 | 69 | 1 | 1 | | -142 | 64 | 1 | 0 | 0 | | 31 | 1069 | 1 | -232 | 54 | 1 | 2 | 0 | -16 | 70 | 1 | 2 | • | | 7 | 4759 | 2 | -337 | 27 | 1 | 1 | 0 | 365 | 1 | 1 | 1 | • | | 13 | 2731 | 2 | 233 | 57 | 1 | 1 | 0 | 287 | 47 | 1 | 1 | • | | 13 | 2887 | 1 | -376 | 18 | 0 | 1 | 0 | -79 | 73 | 0 | 1 | 0 | | 139 | 277 | 1 | 353 | 33 | 1 | 2 | 0 | 245 | 59 | 1 | 1 | 0 | | 7 | 5641 | 2 | -265 | 57 | 1 | 0 | 0 | 356 | 34 | 1 | 0 | 0 | | 13 | 3121 | 1 | 398 | 12 | 1 | 0 | 0 | 47 | 77 | 0 | 1 | 0 | | 7 | 5881 | 1 | 20 | 78 | 1 | 1 | , | -169 | 71 | 1 | 1 | 0 | | 13 | 3229 | 1 | -385 | 27 | 1 | 2 | 0 | 155 | 73 | 0 | 1 | 0 | | 13 | 3271 | 2 | 287 | 57 | 1 | 2 | | -307 | 53 | 1 | 2 | 0 | | 7 | 6133 | 1 | 407 | 15 | 1 | 2 | 0 | -349 | 43 | 1 | 2 | | | 13 | 3307 | 2 | 404 | 18 | 0 | 1 | 0 | -109 | 77 | 1 | 0 | 0 | | 97 | 463 | 1 | -124 | 78 | 1 | 2 | 0 | -313 | 55 | 1 | 2 | • | | 13 | 3541 | 2 | -415 | 21 | 1 | 1 | 0 | 125 | 79 | 1 | 1 | | | 13 | 3613 | 2 | -343 | 51 | 1 | 1 | 0 | 278 | 64 | 1 | 1 | | | 13 | 3697 | 1 | 434 | 12 | 0 | 1 | 0 | -79 | 83 | 0 | 1 | 0 | | 31 | 1579 | 2 | 314 | 60 | 1 | 1 | 0 | -442 | 4 | 1 | 1 | | | 139 | 373 | 2 | -55 | 87 | 1 | 0 | 0 | -244 | 74 | 1 | 2 | 0 | | 13 | 4003 | 1 | 443 | 21 | 1 | 1 | | 92 | 86 | 1 | 1 | 0 | | 157 | 337 | 2 | 413 | 39 | 1 | 1 | 0 | -343 | 59 | 1 | 1 | | | 79 | 673 | 2 | -220 | 78 | 1 | 2 | | -409 | 41 | 1 | 2 | 0 | | 7 | 7699 | 1 | -295 | 69 | 1 | 1 | | 407 | 43 | 1 | 1 | 0 | | 13 | 4243 | 2 | 44 | 90 | 1 | 2 | | -469 | 5 | 1 | 2 | 0 | | 43 | 1291 | 1 | -133 | 87 | 1 | 2 | 0 | -403 | 47 | 1 | 2 | • | | 97 | 601 | 2 | -355 | 63 | 1 | 0 | 0 | -139 | 89 | 1 | 0 | 0 | | 157 | 373 | 2 | 287 | 75 | 1 | 2 | | -469 | 23 | 1 | 2 | 0 | | 13 | 4597 | 1 | 389 | 57 | 1 | 2 | 0 | 281 | 77 | 1 | 2 | | | 31 | 1951 | 1 | 461 | 33 | 1 | 0 | 0 | -457 | 35 | 1 | 0 | 0 | | 79 | 769 | 1 | -484 | 18 | 1 | 1 | | -349 | 67 | 1 | 1 | 0 | | 223 | 277 | 2 | -472 | 30 | 1 | 0 | 0 | -256 | 82 | 1 | 0 | 0 | | 13 | 4759 | 1 | -421 | 51 | 1 | 2 | 0 | 281 | 79 | 1 | 2 | • | | 31 | 2011 | 2 | -469 | 33 | 1 | 0 | 0 | 233 | 85 | 1 | 0 | 0 | | 223 | 283 | 1 | -394 | 60 | 1 | 2 | 0 | -502 | 4 | 1 | 2 | • | | 229 | 283 | 2 | -460 | 42 | 0 | 1 | 0 | -244 | 86 | 0 | 1 | 0 | | 79 | 823 | 1 | -106 | 96 | 1 | 2 | 0 | 191 | 91 | 1 | 2 | • | | 7 | 9463 | 1 | -421 | 57 | 1 | 0 | 0 | 281 | 83 | 1 | 0 | 0 | | 13 | 5101 | 1 | -25 | 99 | 1 | 1 | • | 515 | 1 | 1 | 1 | 0 | | 7 | 9547 | 2 | 482 | 36 | 1 | 1 | 0 | -517 | 1 | 1 | 1 | | | 79 | 859 | 1 | -259 | 87 | 1 | 2 | 0 | 38 | 100 | 1 | 2 | | | 7 | 9787 | 1 | -97 | 99 | 1 | 2 | 0 | 281 | 85 | 1 | 2 | | | | | <u> </u> | II | | | | | | | <u> </u> | | | | 79 | 877 | 1 | 515 | 21 | 1 | 1 | • | 488 | 38 | 1 | 1 | 0 | |-----|-------|---|------|-----|---|---|---|------|-----|---|---|---| | 7 | 10093 | 1 | 344 | 78 | 0 | 1 | 0 | -169 | 97 | 0 | 1 | 0 | | 13 | 5641 | 1 | -538 | 12 | 1 | 2 | 0 | 83 | 103 | 1 | 2 | * | | 7 | 10723 | 1 | 461 | 57 | 1 | 2 | 0 | -538 | 20 | 1 | 2 | | | 13 | 5881 | 2 | 467 | 57 | 1 | 0 | 0 | 278 | 92 | 1 | 0 | 0 | | 13 | 5953 | 2 | -109 | 105 | 1 | 2 | • | -541 | 25 | 1 | 2 | 0 | | 7 | 11131 | 2 | -526 | 36 | 0 | 1 | 0 | 419 | 71 | 0 | 1 | 0 | | 13 | 6007 | 2 | -541 | 27 | 1 | 1 | 0 | 161 | 103 | 1 | 1 | • | | 7 | 11311 | 2 | 545 | 27 | 1 | 1 | 0 | -454 | 64 | 1 | 1 | • | | 13 | 6163 | 1 | -151 | 105 | 0 | 1 | 0 | 551 | 25 | 0 | 1 | 0 | | 13 | 6397 | 1 | -187 | 105 | 1 | 1 | • | -538 | 40 | 1 | 1 | 0 | | 7 | 11887 | 2 | -13 | 111 | 1 | 1 | 0 | -202 | 104 | 1 | 1 | • | | 31 | 2689 | 1 | -556 | 30 | 1 | 0 | 0 | 308 | 94 | 1 | 0 | 0 | | 139 | 601 | 1 | 191 | 105 | 1 | 1 | • | 407 | 79 | 1 | 1 | 0 | | 7 | 11941 | 2 | 41 | 111 | 0 | 1 | 0 | 176 | 106 | 0 | 1 | 0 | | 7 | 12517 | 2 | 293 | 99 | 0 | 1 | 0 | -463 | 71 | 0 | 1 | 0 | | 13 | 6781 | 2 | -577 | 27 | 1 | 1 | 0 | -118 | 112 | 1 | 1 | • | | 283 | 313 | 1 | 533 | 51 | 1 | 0 | 0 | 587 | 19 | 1 | 0 | 0 | | 7 | 12739 | 1 | 153 | 111 | 1 | 0 | 0 | -358 | 92 | 1 | 0 | 0 | | 7 | 13441 | 1 | 209 | 111 | 1 | 1 | • | 20 | 118 | 1 | 1 | 0 | | 157 | 601 | 1 | -250 | 108 | 1 | 2 | 0 | 614 | 4 | 1 | 0 | 0 | | 7 | 13873 | 1 | -412 | 90 | 1 | 1 | • | 209 | 113 | 1 | 1 | 0 | | 79 | 1231 | 2 | 14 | 120 | 1 | 2 | • | -337 | 101 | 1 | 1 | • | | 7 | 13903 | 2 | -22 | 120 | 1 | 1 | 0 | -211 | 113 | 1 | 1 | • | | 31 | 3163 | 2 | 278 | 108 | 0 | 1 | 0 | 170 | 116 | 0 | 1 | 0 | | 43 | 2281 | 1 | 560 | 54 | 0 | 1 | 0 | 128 | 118 | 0 | 1 | 0 | | 283 | 349 | 1 | -619 | 21 | 1 | 1 | | -565 | 53 | 1 | 1 | 0 | | | | | | | | | | | | | | | ## References - [1] H. Cohen: A course in computational algebraic number theory. Graduate Texts in Math., 138, Springer-Verlag, New York, Heidelberg, Berlin (1993). - [2] T. Fukuda: On the vanishing of Iwasawa invariants of certain cyclic extensions of Iwasawa invariants of certain cyclic extensions of $\bf Q$ with prime degree. Proc. Japan Acad., $\bf 73A$, $\bf 108-110$ (1997). - [3] T. Fukuda, K. Komatsu, M. Ozaki, and H. Taya: On Iwasawa λ_p -invariants of relative real cyclic extensions of degree p. Tokyo J. Math., **20-2**, 475-480 (1997). - [4] G. Yamamoto: On the vanishing of Iwasawa invariants of certain (p, p)-extensions of Q. Proc. Japan Acad., 73A, 45-47 (1997).