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1. Introduction. Throughout the paper, we
fix an odd prime number £ For a prime number
p congruent to one module ¢, we denote by k, the
unique subfield of @Q({,) of degree ¢, where (, is
a primitive p-th root of unity. Let F,= Z/Z

a
and let (E)e be the #-th power residue symbol

for an integer a. In [2], we proved the following
theorem.

Theorem 1.1 (Corollary 2.3 in [2]). Let p
and q be distinct pm’me numbers congruent to one

modulo € satisfying (* e # 1, (p e # 1, 4a 1

(mod €°). Let x, y, z E Fo such that ( qﬁ =
1, (ép Ye=1 and pg° = 1 (mod €%). If xyz +

-1, then Sor any subfield k of k,k, of degree €, the
Twasawa invariants A,(k) and py(k) are both zero.
In this paper, we investigate the case (%)g
= 1.
2. Theorems. Let p and g be distinct

prime numbers congruent to one modulo £ We
assume that p %= 1 (mod £ ), ¢ # 1 (mod £%),

(5)49&1 and (p)e— ('Z)g—l We treat the

case (E)g = 1 and the case (2]-)/ # 1 separate-

ly. In the case (E)é = 1, we have the following
theorem.

Theorem 2.1. Assume that (ﬁ)/ = 1. Let k

be a subfield of k,k, of degree ¢ whwh s different
from k, and k, If p eé EK™, then 2,(k) and po(k)
are both zero.

Here E, denotes the unit group of k. In the
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¢
case (E)g # 1, we need to specify k explicitly.

Let
([ k/Q ([ k/Q
o= ( 7 > t= ( 7 )

be Frobenius automorphisms. We identify the
Galois group G (k,/ Q) with G (k,k,/k,) and G
(k/Q) with G (k,k,/k,) canonically. Then G
(kyk/Q) = < o, 7 >.1If kis a subfield of k,k,
with degree ¢ which is different from k, and £k,
then G(k,k,/k) = < o' > for some i € F/. In
this case, we have the following theorem.

2
Theorem 2.2. Assume that (E)[ #+ 1. Letk

be a subfield of k,k, which corresponds to < ot' >
for some i € F;' and z the element of F; such that
pg" =1 (mod £°). If pg*" & E k™% then A, (k)
and pe(k) are both zevo.

3. Proof. We shall prove Theorem 2.2,
For a Galois extension k of @, we denote by A (k)
the #-primary part of the ideal class group of k
and B (k) the subgroup of A(k) consisting of ele-
ments which are invariant under the action of
G(k/Q). Let p,, p,, ..., p be the prime ideals
of k which are ramified in A/ Q. If k/Q is a cyc-
lic extension of degree ¢, then B (k) is an
f-elementary abelian group of rank s — 1 gener-
ated by cl(p,), cl(p,), ..., cl(py).

Let @, be the subfield of Q({,2) of degree ¢
and put

_ ( Q/ Q)
q .

Then G(Q/Q) = < n >. Let p, (resp. b,) be the
prime ideal of k lying over p (resp. q). Since p #
1 (mod £*) and ¢ # 1 (mod ¢*), p, and p, inert
in kQ,/ k. So, if we show that both p, and p, be-
come principal in kQ,, we have A.(k) = po(k) =
0 from Corollary 3.6 of [3].

In order to show that both p, and p, become
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principal in kQ,, we use a subfield F of K=
k,k,Q,. We identify G(k,/Q) with G(K/k,Q,), G
(k/@Q with G (K/k,Q,) and G (Q,/Q) with
G (K/k,k,) canonically. We consider ¢, 7 and 7
as elements of G (K/Q). In this situation, the
above k corresponds to < o7', p >. Let F be a
subfield of k@, of degree ¢ which is different
from k and @,. Such F corresponds to < o7,
0‘7’]t > for some t € F,. Let B,, B, and P be
the prime ideals of F lying over p, g and £ re-
spectively. Since B, = p,, B, = p, in kQ, and B,
becomes principal in kQ,, we see that if ‘BZ?BZ?B;
is principal in F for some integers a, b, ¢ then
pr: is principal in £Q),.
Now, since

()] (32) -1
(- (40
we have
( Igf‘) = (07)’(on) ™" = a""n".

Similarly we have

( Igg/F) _ (OTi)—l/l(Ont)l/t _ T—i/tr]
q
and
< 1%5) _ (Uz_i)l/i(o_y]t)l—l/i _ O'TY]t_t/i.

We identify G(K/ @) with F; by the correspond-

ence
1 0 0
0‘—’<0>,T<—><1>,77“—’<0>.
0 0 1

Then the matrix

—zt 0 1
MG, ) = < 0o —ut 1
— 2z 1 t— i
describes <KT/5>, <K£F> an (%) Since
q

the rank of M (i, t) is two for all i, t € F/, we
K/F K/F K/F

have G(K/F)—<( %, >,< T, >,< B, >
> . Furthermore, since K/F is an abelian unrami-
fied extension of degree 82, K is the #-part of the
genus field of F. Hence we have the following
lemma from Corollary 1.2 in [2].

For any subfield F of K of de-
gree € in which p, q and € are ramified, we have
A(F) = B(F) = F;. Furthermore, for an ideal a of

74

Lemma 3.1.

F, a is principal in F if and only if(
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From Lemma 3.1 we see immediately that
‘Bp‘Bz/"B?t is principal in F. Therefore ppp;/i is
principal in £Q,. Since B(k) = < cl(p,), cl(p,)
> is of order ¢, there is a non-trivial relation
between p, and p, in k. Hence, if pi,pz/' is not
principal in k, both p, and p, become principal in
kQ,. Since p,p." is principal in k if and only if

pqg” € Ekkxé, we have proved Theorem 2.2.
The proof of Theorem 2.1 is similar. So we
omit it.
4. Example. We give an example for £ =
3. Readers are suggested to refer to [1] about
cyclic cubic fields. Let p = 7 and q = 223. We
are in the situation of Theorem 2.2. Then qu =
1(mod 9) and
o= (M) = (M)
3 /7 3 )
Let 6, be a root of X®— X?*—2X+ 1. Then k,
= Q(6,) and 6] is equal to — 1 — 6, + 6 or 2
— 0;. Since 3 does not split in k,/@Q, the
Frobenius automorphism o satisfies 0, = 6,
(mod 3). So we have 6, =—1—06,+ 6, and
0, =2—6,=1—6,— 6, Similarly if we let
6, be a root of X?— X® — 73X + 256, then k,

= Q(6,), 6 = 26 — (5/2)6, — (1/2)6" and 6
=25+ (3/2)0,+ (1/2)0 =1 — 6, — 6,. Let
k be a subfield of k,k, of degree 3 which is dif-
ferent from k, and k,. Then k corresponds to
<or>or <or’>.

On the other hand, it is known that there are
two cyclic cubic fields in which 3 and 227 are
ramified. Such a field is the splitting field of
fi(X)=X>—X*—520X+ 925 or f,(X) =

X®— X* — 520X — 2197. We explain how to
determine the polynomial corresponding to
< ot >.

Since {1, 6,, 6,) and {1, 6,, 6,) are integral
bases of k, and k, respectively and since the dis-
criminants of k, and k, are relatively prime, {1,
6, 0;, 0,, 0,0, 0;0‘1, 0;, 01,(9;, 9;0;} forms an
integral basis of k,k, over Z. We let Z° be an
G(k,k,/ Q) module via correspondence

(x) < x, + 2,0, + x,0, + 2,0, + x,6,6, +
x50,0, + x50, + x,0,0, + 20,0,
Then the actions of ¢ and 7 for x = (x;) are as
follows :
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It 1, T I, 1ttty
-, 1, t1z, —I, I \
I, It n-xtr -1
nta A — T~ X
= -z |2'=| -z [27= z,
I, I - —@+%
I, T 1, I, = ntr -z 1
-1 -z —%+%
I~ I, I~ I Rl Al A A
Therefore, if we put
10 100 O 1 0 1
00 -100 0 0 0 -1
01 -100 0 0 1 -1
00 000 O -1 0 -1
A={00 000 O 0 0 1 |
00 000 O 0-1 1
0600 010 1 0-1-1
00 000 -1 0 0 1
00 001-1 0-1 1
then we have x°° = x if and only if Ar = z. It is

easy to see that

1 0 0'
0 1 0
0 0 1
0 0 1
xeZ2’|lAx=2=2Z|0 |®Z| -1 |DZ| -1
0 1 -2
0 1 0
0 -2 1
0 -1 -1

So if we put a=46, 00+004+0:
26,6, — 6,6, then we have a’* = a.

Let 6 be a root of f,(X) or £,(X). We can
test whether o« € @ (6) as follows. We see that
6° # 6 because 6 & k, Hence {1, 6, 6°} forms
an integral basis of Q (f) over Z. If « is con-
tained in Q(@), there exist integers x; such that
x, + 1,0 + x,6° = @ and we can obtain x; by
solving a linear equation

1 6 6° z, a
(1) 1 67 7 ||z |=|a
167 6/ \™ a’

approximately. Hence, if the solutions of (1) are
not integers, then o & Q(6).

If we let 6 be a root of f,(X) and define 67
to be 71/3 — (3/5)0 — (1/15)6% then we
obtain x; which are close to integers and get a =
6 by rounding x; to integers. In other cases, Z;
are. not integers. Hence we can conclude that

[Vol. 74(A),

< ¢t > corresponds to f;(X) and < gz’ > cor-
responds to ,( X).

It is easy to calculate the unit group £, and
it is a routine work to test whether a rational
number is contained in E,k" . Let k, be the spht
ting field of f; (X) , We have 3-223% ¢ E, k
and 3-223 € E, k . Therefore A,(k,) = 0. We
do not know whether A5(k,) is zero.

5. Corrigendum of [2]. In the previous
paper [2], we proved Corollary 2.3 using Lemma
3.2. But, after publication, we found that our
proof for Lemma 3.2 includes some gaps. So we
give here another proof of Corollary 2.3 without
using Lemma 3.2. We use the same notations as
in [2]. There exists the unique subfield k of k,k,
in which £ splits. It is enough to show that lg(k)
= 1e(k) = 0. In the case p # 1 (mod £°), p, and
p, inert in the cyclotomic Z-extension of k£ and
become principal in kQ,. So we have A, (k)
= uo(k) = 0 from Corollary 3.6 of [3]. On the
other hand, we can handle the case p = 1 (mod
£%) by Theorem 1 of [4].

6. Tables. In the case £ = 3, we checked
the conditions of Theorems 2.1 and 2.2 for all p
and g such that pg < 100000. We summarize our
results as Tables I and II. There are two cyclic
cubic fields k£ in which two prime numbers p and
g are ramified. Such k is given as the splitting
field of

X3 _ X% 4 1—&?+Pw,

7
where # and v are integers satisfying 4pq = u’
+ 270", u =2 (mod3), u=v (@mod2 ) and v > 0.

X —

1—pq
3

¢
When (E )¢ # 1, one of these corresponds to

< o7 > and the other corresponds to < ot >
For such k, we have p°q’ € E, £ for some pair
of integers @ and b which satisfies @ # 0 (mod 3)
or b# 0 (m0d3) We notice that 2°¢" € Ek”
implies p°q’ & E,k™ for all pairs (¢, d) such
that (¢, d) # (a, b), (2a, 2b) (mod 3) because
B(k) is a cyclic group of order 3 generated by cl
(p,) and cl(p,). In Table II, z is the element of
F, such that pg° = 1 (mod 9). The asterisks in
Tables I and II mean that we can apply none of
Theorems 2.1 and 2.2.
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