# On totally real cubic fields whose unit groups are of type <br> $$
\{\boldsymbol{\theta}+\boldsymbol{r}, \boldsymbol{\theta}+\boldsymbol{s}\}
$$ 

By Kenji Minemura<br>Graduate School of Human Informatics, Nagoya University, Chikusa-ku, Nagoya 464-8601<br>(Communicated by Shokichi IYANAGA, M. J. A., Dec. 14,1998)

1. Introduction. Let $f(x)$ be a cubic polynomial with rational integer coefficients, which is monic and irreducible. Suppose that all roots $\theta, \theta^{\prime}$ and $\theta^{\prime \prime}$ of $f(x)=0$ are real, and put $K=\mathbf{Q}(\theta)$. Denote by $D_{f}$ the discriminant of polynomial $f(x)$. Let $\mathrm{o}_{K}$ and $E_{K}$ be the ring of integers and the group of units of $K$ respectively. Moreover we denote by $E_{K}^{+}$the subset of $E_{K}$ consisting of the units $\varepsilon$ with $N_{K / \mathbf{Q}} \varepsilon=1$. It is well known by a theorem of Dirichlet [6] that there exists a system of fundamental units $\left\{\varepsilon_{1}, \varepsilon_{2}\right\}$ such that

$$
E_{K}=\{ \pm 1\} \times E_{K}^{+} \text {and } E_{K}^{+}=\left\langle\varepsilon_{1}, \varepsilon_{2}\right\rangle
$$

Our purpose is to determine totally real cubic fields such that the system of fundamental units can be given in the form $\{\theta+r, \theta+s\}$ for some integers $r$, $s$. Note that we can reduce our problem to the case that $\theta$ is a unit in $K$ (i.e., $r=$ $0)$.

First, for the minimal polynomial $f(x)$ of $\theta$ over $\mathbf{Q}$, we can get the following:

Proposition 1. Suppose that $s$ is a non-zero integer and both $\theta$ and $\theta+s$ are in $E_{K}$. Then there is an integer $t$ such that
(a) if $\theta$ and $\theta+s$ are in $E_{K}^{+}$, then $f(x)=$ $x(x+s)(x+t)-1$.
(b) if $\theta$ and $-\theta-s$ are in $E_{K}^{+}$, then $f(x)$ $=x\left(x^{2}+(s+t) x+\left(s t-\frac{2}{s}\right)\right)-1$.
It is easy to prove this proposition.
Conversely we should investigate whether $\{\theta, \theta+s\}$ is a system of fundamental units. As for (i), we can reduce to the case $t \geq 1, s \geq t+$ 1 because of $\theta(\theta+t)=(\theta+s)^{-1}$. In this condition, Stender [3] and Thomas [4] proved $E_{K}^{+}=$ $\langle\theta, \theta+s\rangle$, but we will prove this in a different way. As for (ii), there are only four cases $s=$ $\pm 1, \pm 2$. The case (ii) $s=1$ was studied by Watabe [5] completely.

Our main results are as follows :
Theorem 1 (Stender [3], Thomas [4]). In the
case $f(x)=x(x+t)(x+s)-1(s, t \in \mathbf{Z})$, if $D_{f}$ is positive, square free and $t \geq 1, s \geq t+1$, then $E_{K}^{+}=\langle\theta, \theta+s\rangle$ holds.

Theorem $2(s=-1)$. In the case $f(x)=$ $x\left(x^{2}+(t-1) x+(-t+2)\right)-1(t \in \mathbf{Z})$, if $D_{f}$ is positive and square free, then $E_{K}^{+}=\langle\theta,-$ $\theta+1>$ holds.

Theorem $3(s=2)$. In the case $f(x)=x$ $\left(x^{2}+(t+2) x+2 t-1\right)-1(t \in \mathbf{Z})$, if $D_{f}$ is square free, then $E_{K}^{+}=\langle\theta,-\theta-2\rangle$ holds.

Theorem $4(s=-2)$. In the case $f(x)=$ $x\left(x^{2}+(t-2) x-2 t+1\right)-1(t \in \mathbf{Z})$, if $D_{f}$ is positive, both of $t+1$ and $4 t^{2}+8 t-23$ are square free and $t \not \equiv 2(\bmod 3)$, then $E_{K}^{+}=\langle\theta$, $-\theta+2\rangle$ holds.
2. Preliminaries. We define a function $S$ from $E_{K}$ to $\mathbf{Z}$ by

$$
S(\varepsilon)=\frac{1}{2}\left\{\left(\varepsilon-\varepsilon^{\prime}\right)^{2}+\left(\varepsilon^{\prime}-\varepsilon^{\prime \prime}\right)^{2}+\left(\varepsilon^{\prime \prime}-\varepsilon\right)^{2}\right\}
$$

Moreover, define $\mathscr{A}(K)$, and $\mathscr{B}_{\varepsilon_{1}}(K)$ for $\varepsilon_{1}$ in $\mathscr{A}(K)$ by

$$
\begin{aligned}
\mathscr{A}(K) & =\left\{\varepsilon \in E_{K}^{+} \backslash\{1\} \mid S(\varepsilon) \text { is minimum }\right\} \\
\mathscr{B}_{\varepsilon_{1}}(K) & =\left\{\varepsilon \in E_{K}^{+} \backslash\left\{\varepsilon_{1}^{n} ; n \in \mathbf{Z}\right\} \mid S(\varepsilon) \text { is minimum }\right\}
\end{aligned}
$$

The following lemmas will be useful for the proof of theorems.

Lemma 1 (Brunotte, Halter-Koch [2]). If $\varepsilon_{1}$ is in $\mathscr{A}(K)$ and $\varepsilon_{2}$ is in $\mathscr{B}_{\varepsilon_{1}}(K)$, then $\left(E_{K}^{+}:\left\langle\varepsilon_{1}\right.\right.$, $\left.\left.\varepsilon_{2}\right\rangle\right) \leq 4$ holds.

Lemma 2 (Godwin [1]). For any $\varepsilon, \varepsilon_{1}, \varepsilon_{2}$ in $E_{K}^{+}$and integer $m \geq 2$, we have

$$
\begin{gathered}
S(\varepsilon)^{2}<9 S\left(\varepsilon^{2}\right), S(\varepsilon)^{3}<9 S\left(\varepsilon^{3}\right), S(\varepsilon)^{m}<\frac{3^{m+1}}{2} S\left(\varepsilon^{m}\right) \\
S\left(\varepsilon_{1} \varepsilon_{2}\right)<3 S\left(\varepsilon_{1}\right) S\left(\varepsilon_{2}\right), S\left(\varepsilon^{-1}\right) \leq S(\varepsilon)^{2}
\end{gathered}
$$

Lemma 3. In the conditions of Theorem 1, it holds that

$$
S(\theta(\theta+s)) \leq S(\theta)^{2}, S\left(\theta^{2}(\theta+s)\right)<S(\theta)^{3}
$$

Proof. We can easily prove Lemma 3 by elementary calculation.

Lemma 4. In the conditions of Theorem 1, we have $S(\theta) \geq 12$.

Proof. We have $S(\theta)=(t+s)^{2}-3 s t=t^{2}$
$-t s+s^{2}$ and in the case $t \geq 1, s \geq t+1$, if $D_{f}$ is positive and square free, then we have $(t, s)$ $\neq(1,2),(1,3),(2,3),(3,4)$.
3. Proofs of Theorems 1 and 2. In the condition of Theorem 1 , the case $s=t+1$ can be reduced to the case $t=1$. So we have only to prove the case $t \geq 1, s \geq t+2$.

For the proof of Theorem 1, we need some lemmas. First we shall show the next lemma.

Lemma 5. In the conditions of Theorem 1, we have $\theta \in \mathscr{A}(K)$.

Proof. Since $D_{f}$ is square free, we have $\mathrm{o}_{K}$ $=\mathbf{Z}+\mathbf{Z} \theta+\mathbf{Z} \theta^{2}$ (Cohen [7]). For any $u \in$ $E_{K}^{+} \backslash\{1\}$ which is expressed in the form $u=a+$ $b \theta+c \theta^{2}, a, b, c \in \mathbf{Z},(b, c) \neq(0,0)$, we have

$$
S(u)=S(\theta) b^{2}+T(\theta) c^{2}+U(\theta) b c
$$

where

$$
\begin{aligned}
\text { ere } \\
\begin{aligned}
T(\theta):= & \frac{1}{2}\left\{\left(\theta^{2}-\theta^{\prime 2}\right)^{2}+\left(\theta^{\prime 2}-\theta^{\prime \prime 2}\right)^{2}+\left(\theta^{\prime \prime 2}-\theta^{2}\right)^{2}\right\} \\
= & t^{4}-s^{2} t^{2}-6 t+s^{4}-6 s, \\
U(\theta):= & \left(\theta-\theta^{\prime}\right)\left(\theta^{2}-\theta^{\prime 2}\right)+\left(\theta^{\prime}-\theta^{\prime \prime}\right)\left(\theta^{\prime 2}-\theta^{\prime \prime 2}\right) \\
& +\left(\theta^{\prime \prime}-\theta\right)\left(\theta^{\prime \prime 2}-\theta^{2}\right) \\
= & -2 t^{3}+s t^{2}+s^{2} t-2 s^{3}+9 .
\end{aligned}
\end{aligned}
$$

If $c=0$, then $S(u)=S(\theta) b^{2} \geq S(\theta)$. Next, suppose $|c|=1$. Then we have
$S(u)=S(\theta)=\left(t^{2}-t s+s^{2}\right) b^{2} \pm\left(-2 t^{3}+s t^{2}+\right.$ $\left.s^{2} t-2 s^{3}+9\right) b$
$+\left(t^{4}-\left(s^{2}+1\right) t^{2}+(s-6) t+\left(s^{4}-s^{2}-6 s\right)\right)$.
If $t \geq 2, s \geq t+2$, then we can see the discriminant of the above polynomial in $b$ is negative. So we have $S(u)>S(\theta)$. If $t=1, s \geq 3$, we also have $S(u) \geq S(\theta)$ because the minimum of $S(u)-S(\theta)$ is $2 s-6 \geq 0$ when $b= \pm s$. Finally, suppose $|c| \geq 2$. Then we have $S(u)-$ $S(\theta) \geq S(u)-\frac{1}{4} S(\theta) c^{2}$ and we can see the discriminant of $S(u)-\frac{1}{4} S(\theta) c^{2}$, as a polynomial in $b$, is negative. So we have $S(u)>S(\theta)$. Therefore we obtain $\theta \in \mathscr{A}(K)$.

Next, we shall show the next lemma.
Lemma 6. In the conditions of Theorem 1, we have $\theta+s \in \mathscr{B}_{\theta}(K)$.

Proof. Since $S(\theta+s)=S(\theta)$, its minimality is obvious.

Suppose $\theta+s=\theta^{m}, m \in \mathbf{Z}$. Since $f(x)=$ $x^{3}+(t+s) x^{2}+t s x-1$, it is easy to see $m \neq$ $0, \pm 1, \pm 2, \pm 3$. Suppose $m \geq 4$. From Lemma 2, we have

$$
S(\theta)^{m}<\frac{3^{m+1}}{2} S\left(\theta^{m}\right)=\frac{3^{m+1}}{2} S(\theta+s)=\frac{3^{m+1}}{2} S(\theta)
$$

Hence we have $S(\theta)<\left(\frac{3^{m+1}}{2}\right)^{\frac{1}{m-1}} \leq\left(\frac{3^{5}}{2}\right)^{\frac{1}{3}}$ $<5$. If $m \leq-4$, again from Lemma 2 , we similarly get $S(\theta)<12$. These contradict to Lemma 4. Thus we obtain $\theta+s \in \mathscr{B}_{\theta}(K)$.

Proof of Theorem 1. If we put $E_{0}=\langle\theta, \theta$ $+s\rangle$, from Lemma 1 we have

$$
\left(E_{K}^{+}: E_{0}\right) \leq 4
$$

First, we shall show that $\left(E_{K}^{+}: E_{0}\right)$ is odd. Suppose that ( $E_{K}^{+}: E_{0}$ ) is even, then there exists $\varepsilon \in E_{K}^{+} \backslash E_{0}$ such that

$$
\varepsilon^{2}=\theta^{k}(\theta+s)^{l}, \quad k, l \in\{0,1\}
$$

If $(k, l)=(0,0)$, then $\varepsilon^{2}=1$. As $\varepsilon \in E_{K}^{+}$, we have $\varepsilon=1$. This is a contradiction. If $(k, l)$ $=(1,0)$, then $\varepsilon^{2}=\theta$. Since

$$
S(\theta)^{2} \leq S(\varepsilon)^{2}<9 S(\theta)
$$

we have $S(\theta)<9$. This contradicts to Lemma 4. If $(k, l)=(0,1)$, then we obtain a contradiction similarly. If $(k, l)=(1,1)$, then $\varepsilon^{2}=\theta(\theta+s)$. So we have

$$
S(\varepsilon)^{2}<9 S\left(\varepsilon^{2}\right)=9 S(\theta(\theta+s))<9 S(\theta)^{2}
$$

Hence we obtain $S(\varepsilon)<3 S(\theta)$. But we can see by elementary way that no unit $\varepsilon$ can satisfy the following conditions simultaneously:

$$
\left\{\begin{array}{l}
\varepsilon^{2}=\theta(\theta+s) \\
S(\varepsilon)<3 S(\theta) \\
\varepsilon \in E_{K}^{+}
\end{array}\right.
$$

Finally we shall show that $\left(E_{K}^{+}: E_{0}\right) \neq 3$. Suppose that $\left(E_{K}^{+}: E_{0}\right)=3$, then there exists $\varepsilon \in$ $E_{K}^{+} \backslash E_{0}$ such that

$$
\varepsilon^{3}=\theta^{k}(\theta+s)^{l}, \quad k, l \in\{0,1,2\}
$$

If $(k, l)=(0,0)$, then $\varepsilon=1$. This is a contradiction. If $(k, l)=(1,0)$, then $\varepsilon^{3}=\theta$. Since

$$
S(\theta)^{3} \leq S(\varepsilon)^{3}<9 S(\theta)
$$

we have $S(\theta)<\sqrt[3]{9}$. In a similar way, if $(k, l)$ $=(0,1),(1,1)$, then it follows from Lemmas 2 and 3 that $S(\theta)<\sqrt[3]{9}, 9$ respectively. These contradict to Lemma 4. If $(k, l)=(2,1)$, then $\varepsilon^{3}=$ $\theta^{2}(\theta+s)$. Since
$S(\varepsilon)^{3}<9 S\left(\varepsilon^{3}\right)=9 S\left(\theta^{2}(\theta+s)\right)<9 S(\theta)^{3}$, we have $S(\varepsilon)<\sqrt[3]{9} S(\theta)$. If $(t, s) \neq(2,4),(3,5)$, $(4,6),(5,7),(2,5)$, we can see by elementary way that no unit $\varepsilon$ can satisfy the following conditions simultaneously:

$$
\left\{\begin{array}{l}
\varepsilon^{3}=\theta^{2}(\theta+s) \\
S(\varepsilon)<\sqrt[3]{9} S(\theta) \\
\varepsilon \in E_{K}^{+}
\end{array}\right.
$$

Otherwise, we can improve $S(\varepsilon)<\sqrt[3]{9} S(\theta)$, and we can also see that there is no unit $\varepsilon$ satisfying these improved condition.

The cases $(k, l)=(2,0),(0,2),(1,2)$, and $(2,2)$ are reduced to the cases $(k, l)=$ $(1,0),(0,1),(2,1)$ and $(1,1)$ respectively. This completes the proof of Theorem 1 .

Corollary 1. In the case $f(x)=x^{3} \mp(t x$ $+1)(s x+1)(t<s, t \neq 0, s \neq 0)$, if $D_{f}$ is positive and square free, then $E_{K}^{+}$is generated by two of the three units $\pm \theta, \pm t \theta \pm 1, \pm s \theta \pm$ 1.

Proof of Corollary 1. This follows by the variable transformation $\theta:= \pm \frac{1}{\theta}$ in Theorem 1.

Proof of Theorem 2. If we put $s:=-1, t$ : $=t+1$ in Corollary 1, we obtain the polynomial in Theorem 2. So we can get Theorem 2.
4. Proofs of Theorem 3 and 4. Proof of Theorem 3. Since we can reduce the case $t \leq 0$ to the case $t \geq 1$ and moreover the cases $t=$ $1,2,3$ do not satisfy the condition in Theorem 3, we may consider the case $t \geq 4$. In this case, we have
(1) $S(\theta)=(t+2)^{2}-3(2 t-1)=t^{2}-2 t+7>15$.

In the conditions in Theorem 3 , we have $\mathfrak{o}_{K}$ $=\mathbf{Z}+\mathbf{Z} \theta+\mathbf{Z} \theta^{2}$ (Cohen [7]). $\theta \in \mathscr{A}(K)$ and -$\theta-2 \in \mathscr{B}_{\theta}(K)$ hold by the similar way to the proof of Lemmas 5,6.
Let $E_{0}=\langle\theta,-\theta-2\rangle$. From Lemma 1 we get

$$
\left(E_{K}^{+}: E_{0}\right) \leq 4
$$

We shall first show that $\left(E_{K}^{+}: E_{0}\right)$ is odd. Suppose that ( $E_{K}^{+}: E_{0}$ ) is even, then there exists $\varepsilon \in E_{K}^{+} \backslash E_{0}$ such that

$$
\varepsilon^{2}=\theta^{k}(-\theta-2)^{l}, \quad k, l \in\{0,1\}
$$

It follows by the same argument as in the proof of Theorem 1 that $(k, l) \neq(0,0),(1,0)$ and $(0,1)$. If $(k, l)=(1,1)$, then $\varepsilon^{2}=\theta(-\theta$ $-2)$ holds. Hence we have $\theta^{2}+2 \theta+\varepsilon^{2}=0$. Since $\theta \in \mathbf{R}$, we have $1-\varepsilon^{2}>0$. Thus we obtain $|\varepsilon|<1$. Similarly, $\left|\varepsilon^{\prime}\right|<1,\left|\varepsilon^{\prime \prime}\right|<1$ hold. These contradict to $\varepsilon \varepsilon^{\prime} \varepsilon^{\prime \prime}=1$.

We shall next show that $\left(E_{K}^{+}: E_{0}\right) \neq 3$. Suppose that $\left(E_{K}^{+}: E_{0}\right)=3$, then there exists $\varepsilon$ $\in E_{K}^{+} \backslash E_{0}$ such that
$\varepsilon^{3}=\theta^{k}(-\theta-2)^{l}, \quad k, l \in\{0,1,2\}$.
In the cases $(k, l)=(0,0),(1,0)$ and $(0,1)$, we can obtain a contradiction by the similar way to the proof of Theorem 1. If $(k, l)=$ $(1,1)$, then $\varepsilon^{3}=\theta(-\theta-2)$ holds. On the other hand, we can show that $S(\theta(-\theta-2))<$ $S(\theta)^{2}$ by elementary calculation. So we have

$$
S(\theta)^{3} \leq S(\varepsilon)^{3}<9 S(\theta(-\theta-2))<9 S(\theta)^{2}
$$

Hence we obtain $S(\theta)<9$, which contradicts to (1). If $(k, l)=(2,1)$, then we have $\varepsilon^{3}=\theta^{2}(-\theta$ $-2)$, and so $\theta^{3}+2 \theta^{2}+\varepsilon^{3}=0$. Since the discriminant $-\varepsilon^{3}\left(27 \varepsilon^{3}+32\right)$ of the above must be positive, we have $\varepsilon<0$. Similarly $\varepsilon^{\prime}<0, \varepsilon^{\prime \prime}<0$ hold. These contradict to $\varepsilon \varepsilon^{\prime} \varepsilon^{\prime \prime}=1$.

We can reduce $(k, l)=(2,0),(0,2)$, $(1,2)$ and $(2,2)$ to $(k, l)=(1,0),(0,1),(2,1)$ and $(1,1)$ respectively. As a result, we have $\left(E_{K}^{+}\right.$: $\left.E_{0}\right)=1$. Therefore we obtain $E_{K}^{+}=\langle\theta$, $-\theta-2\rangle$.

Proof of Theorem 4. From Theorems 3.1 and 3.2 in Fujisaki [8, chap. 4], we can see that $D_{f}$ is the discriminant of $K$, so we have $\mathrm{o}_{K}=\mathbf{Z}$ $+\mathbf{Z} \theta+\mathbf{Z} \theta^{2}$. The rest can be proved in a similar way to the proof of Theorem 3 .

Corollary 2. In the case $f(x)=x^{3}-$ $(2 t-1) x^{2}-(t+2) x-1$, if $D_{f}$ is square free, then $E_{K}^{+}=\langle\theta, 2 \theta-1\rangle$.

Corollary 3. In the case $f(x)=x^{3}-(-$ $2 t+1) x^{2}-(t-2) x-1$, if $D_{f}$ is positive, both of $t+1$ and $4 t^{2}+8 t-23$ are square free and $t \not \equiv 2(\bmod 3)$, then $E_{K}^{+}=\langle\theta, 2 \theta-1\rangle$.

Proof of Corollarys 2 and 3. We can get these results from Theorem 3 and 4 by the variable transformation $\theta:=\frac{1}{\theta}$.

## References

[1] H. J. Godwin: The determination of units in totally real cubic fields. Proc. Cambrige Philos. Soc., 56, 318-321 (1960).
[2] H. Brunotte and F. Halter-Koch: Zur Einheitenberechnung in totalreelen kubischen Zahlkörpern nach Godwin. J. Number Theory, 11, 552-559 (1979).
[3] H. J. Stender: Einheiten für eine allgemeine Klasse total reeller algebraischer Zahlkörper. J. Reine Angew. Math., 257, 151-178 (1972).
[4] E. Thomas: Fundamental units for orders in certain cubic number fields. J. Reine Angew. Math., 310, 33-55 (1979).
[5] M. Watabe: On certain cubic fields I, III, VI. Proc. Japan Acad., 59A, 66-69, 260-262 (1983); 60A, 331-332 (1984).
[6] A. Fröhlich and M. J. Taylor: Algebraic Number Theory. Cambridge Univ. Press, Cambridge (1991).
[7] H. Cohen: A course in computational algebraic number theory. Second Corrected Printing,

GTM138, Springer-Verlag, (1995).
[8] G. Fujisaki: Daisūteki Seisūron Nyūmon. Shoukabou (1974) (in Japanese).

