On totally real cubic fields whose unit groups are of type $\{\theta + r, \theta + s\}$

By Kenji MINEMURA

Graduate School of Human Informatics, Nagoya University, Chikusa-ku, Nagoya 464-8601 (Communicated by Shokichi IYANAGA, M. J. A., Dec. 14,1998)

1. Introduction. Let f(x) be a cubic polynomial with rational integer coefficients, which is monic and irreducible. Suppose that all roots θ , θ' and θ'' of f(x) = 0 are real, and put $K = \mathbf{Q}(\theta)$. Denote by D_f the discriminant of polynomial f(x). Let \mathbf{o}_K and E_K be the ring of integers and the group of units of K respectively. Moreover we denote by E_K^+ the subset of E_K consisting of the units ε with $N_{K/\mathbf{Q}}\varepsilon = 1$. It is well known by a theorem of Dirichlet [6] that there exists a system of fundamental units $\{\varepsilon_1, \varepsilon_2\}$ such that

 $E_{K} = \{\pm 1\} \times E_{K}^{+} \text{ and } E_{K}^{+} = \langle \varepsilon_{1}, \varepsilon_{2} \rangle.$

Our purpose is to determine totally real cubic fields such that the system of fundamental units can be given in the form $\{\theta + r, \theta + s\}$ for some integers r, s. Note that we can reduce our problem to the case that θ is a unit in K (i.e., r = 0).

First, for the minimal polynomial f(x) of θ over **Q**, we can get the following:

Proposition 1. Suppose that s is a non-zero integer and both θ and $\theta + s$ are in E_{K} . Then there is an integer t such that

(a) if θ and $\theta + s$ are in E_{K}^{+} , then f(x) = x(x+s)(x+t) - 1.

(b) if
$$\theta$$
 and $-\theta - s$ are in E_K^+ , then $f(x) = x\left(x^2 + (s+t)x + \left(st - \frac{2}{s}\right)\right) - 1$.

It is easy to prove this proposition.

Conversely we should investigate whether $\{\theta, \theta + s\}$ is a system of fundamental units. As for (i), we can reduce to the case $t \ge 1$, $s \ge t + 1$ because of $\theta(\theta + t) = (\theta + s)^{-1}$. In this condition, Stender [3] and Thomas [4] proved $E_{\kappa}^{+} = \langle \theta, \theta + s \rangle$, but we will prove this in a different way. As for (ii), there are only four cases $s = \pm 1, \pm 2$. The case (ii) s = 1 was studied by Watabe [5] completely.

Our main results are as follows:

Theorem 1 (Stender [3], Thomas [4]). In the

case f(x) = x(x+t)(x+s) - 1 (s, $t \in \mathbb{Z}$), if D_f is positive, square free and $t \ge 1$, $s \ge t+1$, then $E_K^+ = \langle \theta, \theta + s \rangle$ holds.

Theorem 2 (s = -1). In the case $f(x) = x(x^2 + (t-1)x + (-t+2)) - 1$ $(t \in \mathbb{Z})$, if D_f is positive and square free, then $E_K^+ = \langle \theta, -\theta + 1 \rangle$ holds.

Theorem 3 (s = 2). In the case f(x) = x $(x^{2} + (t + 2)x + 2t - 1) - 1$ $(t \in \mathbb{Z})$, if D_{f} is square free, then $E_{K}^{+} = \langle \theta, -\theta - 2 \rangle$ holds.

Theorem 4 (s = -2). In the case $f(x) = x(x^2 + (t-2)x - 2t + 1) - 1$ $(t \in \mathbb{Z})$, if D_f is positive, both of t + 1 and $4t^2 + 8t - 23$ are square free and $t \not\equiv 2 \pmod{3}$, then $E_K^+ = \langle \theta, -\theta + 2 \rangle$ holds.

2. Preliminaries. We define a function S from E_{κ} to \mathbf{Z} by

$$S(\varepsilon) = \frac{1}{2} \{ (\varepsilon - \varepsilon')^2 + (\varepsilon' - \varepsilon'')^2 + (\varepsilon'' - \varepsilon)^2 \}.$$

Moreover, define $\mathscr{A}(K)$, and $\mathscr{B}_{\varepsilon_1}(K)$ for ε_1 in $\mathscr{A}(K)$ by

 $\mathscr{A}(K) = \{ \varepsilon \in E_K^+ \setminus \{1\} \mid S(\varepsilon) \text{ is minimum} \},\$

 $\mathscr{B}_{\varepsilon_1}(K) = \{ \varepsilon \in E_K^{+} \setminus \{ \varepsilon_1^n ; n \in \mathbb{Z} \} \mid S(\varepsilon) \text{ is minimum} \}.$

The following lemmas will be useful for the proof of theorems.

Lemma 1 (Brunotte, Halter-Koch [2]). If ε_1 is in $\mathscr{A}(K)$ and ε_2 is in $\mathscr{B}_{\varepsilon_1}(K)$, then $(E_K^+: \langle \varepsilon_1, \varepsilon_2 \rangle) \leq 4$ holds.

Lemma 2 (Godwin [1]). For any ε , ε_1 , ε_2 in E_K^+ and integer $m \ge 2$, we have

$$S(\varepsilon)^{2} < 9S(\varepsilon^{2}), \ S(\varepsilon)^{3} < 9S(\varepsilon^{3}), \ S(\varepsilon)^{m} < \frac{3^{m+1}}{2}S(\varepsilon^{m}), S(\varepsilon_{1}\varepsilon_{2}) < 3S(\varepsilon_{1})S(\varepsilon_{2}), \ S(\varepsilon^{-1}) \le S(\varepsilon)^{2}.$$

Lemma 3. In the conditions of Theorem 1, it holds that

 $S(\theta(\theta + s)) \leq S(\theta)^2$, $S(\theta^2(\theta + s)) < S(\theta)^3$.

Proof. We can easily prove Lemma 3 by elementary calculation. $\hfill \Box$

Lemma 4. In the conditions of Theorem 1, we have $S(\theta) \ge 12$.

Proof. We have $S(\theta) = (t + s)^2 - 3st = t^2$

No. 10]

 $-ts + s^2$ and in the case $t \ge 1$, $s \ge t + 1$, if D_t is positive and square free, then we have (t, s) \neq (1, 2), (1, 3), (2, 3), (3, 4). \square

3. Proofs of Theorems 1 and 2. In the condition of Theorem 1, the case s = t + 1 can be reduced to the case t = 1. So we have only to prove the case $t \ge 1$. $s \ge t + 2$.

For the proof of Theorem 1, we need some lemmas. First we shall show the next lemma.

Lemma 5. In the conditions of Theorem 1, we have $\theta \in \mathcal{A}(K)$.

Proof. Since D_f is square free, we have o_K $= \mathbf{Z} + \mathbf{Z}\theta + \mathbf{Z}\theta^2$ (Cohen [7]). For any $u \in$ $E_{\kappa}^{+} \setminus \{1\}$ which is expressed in the form u = a + a $b\theta + c\theta^2$, a, b, $c \in \mathbb{Z}$, $(b, c) \neq (0, 0)$, we have $S(u) = S(\theta)b^{2} + T(\theta)c^{2} + U(\theta)bc,$

where

$$T(\theta) := \frac{1}{2} \{ (\theta^2 - \theta'^2)^2 + (\theta'^2 - \theta''^2)^2 + (\theta''^2 - \theta^2)^2 \}$$

= $t^4 - s^2 t^2 - 6t + s^4 - 6s$,
 $U(\theta) := (\theta - \theta') (\theta^2 - \theta'^2) + (\theta' - \theta'') (\theta'^2 - \theta''^2)$
+ $(\theta'' - \theta) (\theta''^2 - \theta^2)$
= $-2t^3 + st^2 + s^2 t - 2s^3 + 9$.

If c = 0, then $S(u) = S(\theta)b^2 \ge S(\theta)$. Next, suppose |c| = 1. Then we have

 $S(u) = S(\theta) = (t^2 - ts + s^2)b^2 \pm (-2t^3 + st^2 + s^2)b^2$ $s^{2}t - 2s^{3} + 9b$

+ $(t^4 - (s^2 + 1)t^2 + (s - 6)t + (s^4 - s^2 - 6s)).$

If $t \ge 2$, $s \ge t + 2$, then we can see the discriminant of the above polynomial in b is negative. So we have $S(u) > S(\theta)$. If $t = 1, s \ge 3$, we also have $S(u) \ge S(\theta)$ because the minimum of $S(u) - S(\theta)$ is $2s - 6 \ge 0$ when $b = \pm s$. Finally, suppose $|c| \ge 2$. Then we have S(u) - $S(\theta) \geq S(u) - \frac{1}{4}S(\theta)c^2$ and we can see the dis-

criminant of $S(u) - \frac{1}{4}S(\theta)c^2$, as a polynomial in

b, is negative. So we have $S(u) > S(\theta)$. Therefore we obtain $\theta \in \mathcal{A}(K)$.

Next, we shall show the next lemma.

Lemma 6. In the conditions of Theorem 1, we have $\theta + s \in \mathcal{B}_{\theta}(K)$.

Proof. Since $S(\theta + s) = S(\theta)$, its minimality is obvious.

Suppose $\theta + s = \theta^m$, $m \in \mathbb{Z}$. Since f(x) = $x^{3} + (t + s)x^{2} + tsx - 1$, it is easy to see $m \neq m$ $0, \pm 1, \pm 2, \pm 3$. Suppose $m \ge 4$. From Lemma 2, we have

$$S(\theta)^m < \frac{3^{m+1}}{2} S(\theta^m) = \frac{3^{m+1}}{2} S(\theta + s) = \frac{3^{m+1}}{2} S(\theta).$$

Hence we have $S(\theta) < \left(\frac{3^{m+1}}{2}\right)^{\frac{1}{m-1}} \le \left(\frac{3^5}{2}\right)^{\frac{1}{3}}$ < 5. If $m \leq -4$, again from Lemma 2, we similarly get $S(\theta) < 12$. These contradict to Lemma 4. Thus we obtain $\theta + s \in \mathcal{B}_{\theta}(K)$.

Proof of Theorem 1. If we put $E_0 = \langle \theta, \theta \rangle$ + s, from Lemma 1 we have

$$(E_K^+:E_0)\leq 4.$$

First, we shall show that $(E_K^+: E_0)$ is odd. Suppose that $(E_{K}^{+}: E_{0})$ is even, then there exists $\varepsilon \in E_K^+ \setminus E_0$ such that

$$\varepsilon^{2} = \theta^{k} (\theta + s)^{l}, \quad k, l \in \{0, 1\}.$$

If (k, l) = (0, 0), then $\varepsilon^2 = 1$. As $\varepsilon \in E_{\kappa}^+$, we have $\varepsilon = 1$. This is a contradiction. If (k, l)= (1, 0), then $\varepsilon^2 = \theta$. Since

$$S(\theta)^2 \leq S(\varepsilon)^2 < 9S(\theta),$$

we have $S(\theta) < 9$. This contradicts to Lemma 4. If (k, l) = (0, 1), then we obtain a contradiction similarly. If (k, l) = (1, 1), then $\varepsilon^2 = \theta(\theta + s)$. So we have

 $S(\varepsilon)^2 < 9S(\varepsilon^2) = 9S(\theta(\theta + s)) < 9S(\theta)^2.$ Hence we obtain $S(\varepsilon) < 3S(\theta)$. But we can see by elementary way that no unit ε can satisfy the following conditions simultaneously:

$$\begin{cases} \varepsilon^2 = \theta(\theta + s), \\ S(\varepsilon) < 3S(\theta), \\ \varepsilon \in E_K^+. \end{cases}$$

Finally we shall show that $(E_{K}^{+}: E_{0}) \neq 3$. Suppose that $(E_{\kappa}^{+}:E_{0})=3$, then there exists $\varepsilon \in$ $E_{K}^{+} \setminus E_{0}$ such that $\varepsilon^{3} = \theta^{k} (\theta + s)^{l}, \quad k, l \in \{0, 1, 2\}.$

If (k, l) = (0, 0), then $\varepsilon = 1$. This is a contradiction. If (k, l) = (1, 0), then $\varepsilon^3 = \theta$. Since $S(\theta)^3 \leq S(\varepsilon)^3 < 9S(\theta)$

we have $S(\theta) < \sqrt[3]{9}$. In a similar way, if (k, l)= (0, 1), (1, 1), then it follows from Lemmas 2 and 3 that $S(\theta) < \sqrt[3]{9}$, 9 respectively. These contradict to Lemma 4. If (k, l) = (2, 1), then $\varepsilon^3 =$ $\theta^2(\theta + s)$. Since

 $S(\varepsilon)^3 < 9S(\varepsilon^3) = 9S(\theta^2(\theta + s)) < 9S(\theta)^3$ we have $S(\varepsilon) < \sqrt[3]{9} S(\theta)$. If $(t, s) \neq (2, 4)$, (3, 5),

(4, 6), (5, 7), (2, 5), we can see by elementary way that no unit ε can satisfy the following conditions simultaneously:

$$\begin{cases} \varepsilon^{3} = \theta^{2}(\theta + s), \\ S(\varepsilon) < \sqrt[3]{9}S(\theta), \\ \varepsilon \in E_{K}^{+}. \end{cases}$$

Otherwise, we can improve $S(\varepsilon) < \sqrt[3]{9} S(\theta)$, and we can also see that there is no unit ε satisfying these improved condition.

The cases (k, l) = (2, 0), (0, 2), (1, 2),and (2, 2) are reduced to the cases (k, l) =(1, 0), (0, 1), (2, 1) and (1, 1) respectively. This completes the proof of Theorem 1.

Corollary 1. In the case $f(x) = x^3 \mp (tx)$ $(+1)(sx + 1)(t < s, t \neq 0, s \neq 0)$, if D_t is positive and square free, then E_K^+ is generated by two of the three units $\pm \theta$, $\pm t\theta \pm 1$, $\pm s\theta \pm$ 1.

Proof of Corollary 1. This follows by the variable transformation $\theta := \pm \frac{1}{\theta}$ in Theorem 1.

Proof of Theorem 2. If we put s := -1, t := t + 1 in Corollary 1, we obtain the polynomial in Theorem 2. So we can get Theorem 2.

4. Proofs of Theorem 3 and 4. Proof of **Theorem 3.** Since we can reduce the case $t \leq 0$ to the case $t \ge 1$ and moreover the cases t =1, 2, 3 do not satisfy the condition in Theorem 3, we may consider the case $t \ge 4$. In this case, we have

(1) $S(\theta) = (t+2)^2 - 3(2t-1) = t^2 - 2t + 7 > 15.$

In the conditions in Theorem 3, we have o_{κ} $= \mathbf{Z} + \mathbf{Z}\theta + \mathbf{Z}\theta^2$ (Cohen [7]). $\theta \in \mathcal{A}(K)$ and - $\theta - 2 \in \mathcal{B}_{\theta}(K)$ hold by the similar way to the proof of Lemmas 5,6.

Let $E_0 = \langle \theta, -\theta - 2 \rangle$. From Lemma 1 we get $(E_{K}^{+}:E_{0}) \leq 4.$

We shall first show that $(E_{\kappa}^{+}:E_{0})$ is odd. Suppose that $(E_{\kappa}^{+}:E_{0})$ is even, then there exists $\varepsilon \in E_{K}^{+} \setminus E_{0}$ such that $\varepsilon^{2} = \theta^{k} (-\theta - 2)^{l}, \quad k, l \in \{0, 1\}.$

It follows by the same argument as in the proof of Theorem 1 that $(k, l) \neq (0, 0)$, (1, 0)and (0,1). If (k, l) = (1, 1), then $\varepsilon^2 = \theta (-\theta - 2)$ holds. Hence we have $\theta^2 + 2\theta + \varepsilon^2 = 0$. Since $\theta \in \mathbf{R}$, we have $1 - \varepsilon^2 > 0$. Thus we obtain $|\varepsilon| < 1$. Similarly, $|\varepsilon'| < 1$, $|\varepsilon''| < 1$ hold. These contradict to $\varepsilon \varepsilon' \varepsilon'' = 1$.

We shall next show that $(E_K^+: E_0) \neq 3$. Suppose that $(E_{\kappa}^{+}:E_{0})=3$, then there exists ε $\in E_{\kappa}^{+} \setminus E_{0} \text{ such that}$ $\varepsilon^{3} = \theta^{k} (-\theta - 2)^{l}, \quad k, l \in \{0, 1, 2\}.$

In the cases (k, l) = (0, 0), (1, 0) and (0,1), we can obtain a contradiction by the similar way to the proof of Theorem 1. If (k, l) =(1, 1), then $\varepsilon^3 = \theta(-\theta - 2)$ holds. On the other hand, we can show that $S(\theta(-\theta - 2)) <$ $S(\theta)^2$ by elementary calculation. So we have

 $S(\theta)^3 \le S(\varepsilon)^3 < 9S(\theta(-\theta-2)) < 9S(\theta)^2$. Hence we obtain $S(\theta) < 9$, which contradicts to (1). If (k, l) = (2, 1), then we have $\varepsilon^3 = \theta^2 (-\theta)$ -2), and so $\theta^3 + 2\theta^2 + \varepsilon^3 = 0$. Since the discriminant $-\varepsilon^3(27\varepsilon^3+32)$ of the above must be positive, we have $\varepsilon < 0$. Similarly $\varepsilon' < 0$, $\varepsilon'' < 0$ hold. These contradict to $\varepsilon \varepsilon' \varepsilon'' = 1$.

We can reduce (k, l) = (2, 0), (0, 2),(1, 2) and (2,2) to (k, l) = (1, 0), (0, 1), (2, 1)and (1,1) respectively. As a result, we have (E_{κ}^{+}) : E_0 = 1. Therefore we obtain $E_K^+ = \langle \theta,$ $-\theta - 2\rangle$.

Proof of Theorem 4. From Theorems 3.1 and 3.2 in Fujisaki [8, chap. 4], we can see that D_f is the discriminant of K, so we have $\mathfrak{o}_K = \mathbf{Z}$ $+ \mathbf{Z}\theta + \mathbf{Z}\theta^2$. The rest can be proved in a similar way to the proof of Theorem 3.

Corollary 2. In the case $f(x) = x^3 - \frac{1}{2}$ $(2t-1)x^2 - (t+2)x - 1$, if D_f is square free, then $E_{K}^{+} = \langle \theta, 2\theta - 1 \rangle$.

Corollary 3. In the case $f(x) = x^3 - ((2t+1)x^2 - (t-2)x - 1$, if D_t is positive, both of t+1 and $4t^2+8t-23$ are square free and $t \not\equiv 2 \pmod{3}$, then $E_{\kappa}^{+} = \langle \theta, 2\theta - 1 \rangle$.

Proof of Corollarys 2 and 3. We can get these results from Theorem 3 and 4 by the variable transformation $\theta := \frac{1}{\theta}$

References

- [1] H. J. Godwin: The determination of units in totally real cubic fields. Proc. Cambrige Philos. Soc., 56, 318-321 (1960).
- [2] H. Brunotte and F. Halter-Koch: Zur Einheitenberechnung in totalreelen kubischen Zahlkörpern nach Godwin. J. Number Theory, 11, 552-559 (1979).
- [3] H. J. Stender: Einheiten für eine allgemeine Klasse total reeller algebraischer Zahlkörper. J. Reine Angew. Math., 257, 151-178 (1972).
- [4] E. Thomas: Fundamental units for orders in certain cubic number fields. J. Reine Angew. Math., **310**, 33-55 (1979).
- [5] M. Watabe: On certain cubic fields I, III, VI. Proc. Japan Acad., **59A**, 66–69, 260–262 (1983); 60A, 331-332 (1984).
- [6] A. Fröhlich and M. J. Taylor: Algebraic Number Theory. Cambridge Univ. Press, Cambridge (1991).
- [7] H. Cohen: A course in computational algebraic number theory. Second Corrected Printing,

No. 10]

GTM138, Springer-Verlag, (1995).

[8] G. Fujisaki: Daisūteki Seisūron Nyūmon. Shoukabou (1974) (in Japanese).