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On computability of the Galerkin procedure
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Abstract: It is shown that the Galerkin approximation procedure is an effective represen-
tation of the solution of a computable coercive variational problem in a computable Hilbert space.

Key words: computable Hilbert space, Galerkin approximation, Lax-Milgram theorem.

1. Introduction. In numerical analysis of a
variational problem, a standard and basic method
is the Galerkin approximation. It is true that nu-
merical analysis and computable analysis, although
both are deeply concerned with computers, do not
necessarily share the motivations. However, simili-
tude, if any exists, should be expected in such an
approximating procedure. Here we explain how the
Galerkin procedure in variational problems should be
interpreted in the context of computable analysis.

In fact, we show that, in an environment which
is reasonable in the sense of computable analysis,
a computable solution of a computable variational
problem is effectively realized by a computable se-
quence of Galerkin approximations. That is, in a
computable Hilbert space, the unique computable so-
lution of a computable version of the Lax-Milgram
theorem is in fact realized as the effective limit of
the computable sequence of the Galerkin approxi-
mations.

2. The Galerkin approximation and
Céa’s estimate. Let X be a separable Hilbert
space over the real R (with the inner product 〈 , 〉
and the norm ‖ ‖). Let B(x, y) be a bounded co-
ercive (or strongly accretive) bilinear form on X.
Thus, B(x, y) is a bilinear form in X which satis-
fies µ ‖x‖ ≤ B(x, x), x ∈ X for some µ > 0 and
|B(x, y)| ≤ M ‖x‖ ‖y‖, x, y ∈ X for some M > 0.
The optimal values of µ and M are called the coer-
civity constant and the bound of the form B, respec-
tively. Let F be a given bounded linear functional
on X. Note that there is an f ∈ X such that

(2.1) F (v) = 〈f, v〉 for all v ∈ X
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by the Riesz-Fréchet theorem.
Consider the following variational problem:

Find u ∈ X such that

(2.2) B(u, v) = F (v) for all v ∈ X.

Actually (2.2) is uniquely solvable by the Lax-
Milgram theorem [4] (and already by the Riesz-
Fréchet theorem when B is symmetric). In fact, by
the Lax-Milgram theorem, we have a linear isomor-
phism T : X → X such that

(2.3) B(x, y) = 〈Tx, y〉 for all x, y ∈ X.

Therefore, u = T−1 f will do since (2.2) is equivalent
to the equation T u = f .

Now suppose that s1, · · · , sN are linearly in-
dependent vectors in X and the corresponding sub-
space they generate is denoted by XN . Let PN be
the orthogonal projection from X onto XN . Let BN

and FN be respectively the restrictions of B and F

on XN . (2.2) then is reduced to the following : Find
uN ∈ XN such that

(2.4) BN (uN , vN ) = FN (vN ) for all vN ∈ XN

or equivalently

(2.5) (PN T PN ) uN = PN f

with the operator PN T PN acting on XN .
Now using the basis s1, · · · , sN , we represent

XN as the linear space RN . Put uN = t(x1, · · · , xN )
and vN = t(y1, · · · , yN ) where uN = PN u =∑N

j=1 xj sj and vN = PN v =
∑N

k=1 yk sk. Then the
bilinear form BN is expressed in the form of an N×N

matrix �N = t
(
B(sj , sk)

)
, which is non-degenerate

because of coercivity of B. Then (2.5) turns out to
be a system of N inhomogeneous linear equations:

�N uN = fN
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where fN = t(F (s1), · · · , F (sN )). uN is thus
uniquely solved by the standard linear algebra.
Hence uN in (2.5) is determined with a certain ex-
plicitness by transporting uN to the coefficients of
s1, · · · , sN .

In particular, note

(2.6) B(u − uN , vN ) = 0 for all vN ∈ XN .

In fact, from (2.2) and (2.4), the left-hand side
equals to 〈f, vN 〉 − 〈fN , vN 〉, which vanishes since
vN = PNvN .

We call uN the Galerkin approximation of u in
XN .

Remark 1. Put wN = T−1 PNf ∈ X. Since
PN uN = uN ∈ XN , we have

PN TPN(uN − PNwN ) = −PN (I − PN )wN .

Then

µ ‖uN − PNwN‖ ≤ ‖(I − PN )wN‖
≤ ‖(I − PN )T−1(I − PN )f‖

+ ‖(I − PN )T−1f‖
by (2.3) and the coercivity of B.

We have the following Céa’s estimate（[3]. See
also [2]):

Proposition 1. Let µ > 0 be the coercivity
constant of the form B and M its bound. Then we
have

‖u − uN‖ ≤ M

µ
inf

vN∈XN

‖u − vN‖

=
M

µ
min

vN∈XN

‖u − vN‖.
(2.7)

In fact, by the coercivity,

µ ‖u−uN‖2 ≤ B(u−uN , u−vN )+B(u−uN , uN−vN )

and the second term on the right-hand side vanishes
because of (2.6). Recall then

|B(u − uN , u − vN )| ≤ M ‖u − uN‖ ‖u − vN‖
which yields the estimate (2.7).

Remark 2. Let dist (u,XN ) denote the dis-
tance of u ∈ X to the closed subspace XN and
u⊥

N ∈ XN the orthogonal projection of u to XN .
Then

dist (u,XN ) = ‖u − u⊥
N‖ = min

vN∈XN

‖u − vN‖.

Now let S = {sj}j=1,2,··· be a system of linearly in-
dependent elements of X such that its linear span

is dense in X. If, for each n, Xn is a subspace
generated by s1, · · · , sn, then {Xn}n=1,2,··· is an in-
creasing sequence of subspaces such that the union⋃∞

n=1 Xn is dense in X. Therefore, for each x ∈ X,
limn→∞ dist (x,Xn) = 0. Then the Galerkin ap-
proximations un in Xn coverges to the solution u ∈
X as n → ∞, but the rate of convergence depends
on S and u (i.e., B and F ).

3. Computability of the Galerkin proce-
dure. Now suppose furthermore that X is an effec-
tive separable Hilbert space (See [5, 6]). Recall that
a Hilbert space is computable if it is endowed with
a computability structure and is effective separable
if it in addition has an effectively generating set [5].
We first review in a very sketchy manner the notion
of computability in a Hilbert space.

A computability structure in X is by defini-
tion a non-empty set � of computable sequences,
which are specified by the three axioms for a com-
putability structure ([5; Chapter 2. p.81], in par-
ticular. See also the discussions below). An ele-
ment x ∈ X is computable if the sequence {x, x, · · · }
lies in � or is computable. A computable sequence
S = {sn}n=1,2,···, that is, S ∈ � , is an effectively
generating set of X if its rational linear span D is
dense in X. If X is an effective separable Hilbert
space, all the sequences that are effectively obtained
actually from S form a set of sequences which satisfy
the axioms for a computability structure in X (This
construction will be explained shortly). This set co-
incides with the original computability structure �
in X. That is, the computablitiy structure � is de-
termined as the set of all the sequences effectively
derived from S. In this sense, for any given count-
able system S such as discussed in Remark 2, we can
talk of the computability structure it determines.

There is a computable complete orthonormal
system E = {en}n=1,2,··· such that each sj is a com-
putable linear combination of e1, · · · , ej . Note that
if S is a system of linearly independent elements,
then each ej can be chosen as a linear combination
of s1, · · · , sj (The Gram-Schmidt procedure. See [5,
pp. 139–140]). E is also an effectively generating set
and determines the same computability structure �
as S does.

Now we explain more explicitly how the com-
putability structure � is constructed from the effec-
tively generating set E (and just in a similar manner
if E is replaced by S). A sequence {yk}k=1,2,··· is
computable if yk =

∑d(k)
n=1 cnk en for each k. Here
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d : N → N is a recursive function and {cnk} is
a computable double sequence of rational numbers.
Any effective limit {xk}k=1,2,··· of a computable dou-
ble sequences {ym,k}k,m=1,2,···, is computable. Here
we mean by an effective limt that there is a recur-
sive function r : N2 → N such that, for all N, k,
m > r(N, k) implies ‖xk − ym,k‖ < 2−N . Finally,
an element x ∈ X is computable if there is a com-
putable sequence {xk} such that ‖x − xk‖ < 2−N

for k ≥ e(N) with an appropriate recursive function
e : N → N (effective convergence. See [5]). We may
here renumber {xk} so that e(k) = k (fast conver-
gence. [5]) unless the recursive numbering of {xk}
itself is at stake.

Remark 3. If X is infinite dimensional, it
admits infinitely many computably non-equivalent
computable structures (See [5]. cf. also [7]). In
concrete spaces such as the Sobolev spaces, we have
the canonical computable structures, which are com-
patible with most of classical calculus.

Now consider S as in Remark 2. Recall that
each subspace XN is generated by s1, · · · , sN from
the above S (or e1, · · · , eN from E in the present
case). Therefore, any element of XN is a linear com-
bination of s1, · · · , sN or of e1, · · · , eN .

Let PN : X → XN be the orthogonal projec-
tion. Then we have the following (see [5; Lemma 1,
p.136]).

Lemma 1. Let x ∈ X. Let xN = PN x

(N = 1, 2, · · · ) be the orthogonal projection of x on
XN . Then x is a computable element of X if and
only if {xN}N=1,2,··· is a computable sequence in X.
Moreover, then {xN} converges effectively to x, that
is, ‖xN −x‖ < 2−k for N > e(k) with an appropriate
recursive function e : N → N.

Let us return to our original problem (2.2). Take
a bilinear form B on X. We may consider the con-
ditions :

the double sequence{
B(ej , ek)

}
j,k=1.2.··· is computable

(3.1)

and also
the sequence{ ∞∑

k=1

|B(ej , ek)|2
}

j=1,2,···
is computable.

(3.2)

The meaning of these conditions is fully discussed in
Brattka-Yoshikawa [1]. In particular, in case when B

is coercive, the coercivity constant µ and the bound
M are computable reals.

As for a bounded linear functional F on X (see
(2.1)), we may consider the conditions

the sequence

{F (en)}n=1,2,··· is computable
(3.3)

and

the functional norm

‖F‖∗ = sup
‖v‖=1

|F (v)| is a computable real .(3.4)

Remark 4. The conditions (3.1) and (3.3) are
of the same nature and so are the conditions (3.2)
and (3.4). This is seen by taking the tensor product
X⊗̂X into account.

Now a version of the Lax-Milgram theorem in
computable analysis reads as follows:

Theorem 1. Suppose X is an effective sepa-
rable Hilbert space. Let B be a coercive bilinear form
on X satisfying (3.1) and (3.2). Then (2.3) is valid
with T such that both T and T−1 map computable
sequences in X into computable sequences in X. For
any bounded linear functional F on X which satisfy
(3.3) and (3.4), there are uniquely determined com-
putable elements u ∈ X and u1 ∈ X such that

F (v) = B(u, v) = B(v, u1) for any v ∈ X.

For the proof, we refer to Brattka-Yoshikawa [1].
Now we reconsider Proposition 1 in the situa-

tion of Theorem 1. Since s1, · · · , sN are computable
elements of X generated by e1, . . . , eN , the system
of equations (2.5) consists of a matrix�N with com-
putable entries and a right-hand side fN with com-
putable components because of the assumptions of
Theorem 1. Hence, uN is of computable components
and thus the corresponding vector uN in XN , the
Galerkin approximation of u in XN , is a computable
element of X.

We have to show that the sequence {uN}N=1,2,···
is a computable sequence in X, and that this se-
quence effectively converges to u.

We first show the latter part. It is enough
to pick up an effectively determined subsequence of
{uN} which effectively converges to u.

Now since u is an computable element in X,
there is a computable sequence {ũn} in X which ef-
fectively converges to u. More precisely, we have
‖u − ũk‖ < 2−k, where

ũk =
�(k)∑
j=1

cjk ej
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with a computable double sequence {cjk} and a re-
cursive function � : N → N, which can be strictly
increasing. Note that the sequence {ũn} is in gen-
eral not related to the Galerkin approximations of
u.

Observe that we may write

ũk =
�(k)∑
j=1

c′jk sj ∈ X�(k)

with a computable double sequence {c′jk} because
of the Gram-Schmidt procedure to obtain E from
S. Here we recall that, for each N , XN is a linear
subspace of X generated by s1, · · · , sN . Thus, in
particular, dist (u,X�(k)) ≤ ‖u − ũk‖.

Consider now the sequence {u�(k)}, which is an
effectively determined subsequence of the Galerkin
approximations {uN}. For each Galerkin approxi-
mation u�(k) ∈ X�(k), we have

‖u − u�(k)‖ ≤ M

µ
dist (u,X�(k))

≤ M

µ
‖u − ũk‖ <

M

µ
2−k

by Proposition 1. Note M
µ is a computable real.

Hence, the sequence {u�(k)} effectively converges to
u and so does the full sequence {uN} of Galerkin
approximations since the sequence of the subspaces
XN is increasing.

The above argument is still not enough to ensure
computability of the sequence {uN}N=1,2,···. Recall
Lemma 1 together with Remark 1. Observe that
{PNf} is a computable sequence in X since f ∈ X
is a computable element. Hence, {wN}N=1,2,··· and
also {PN wN}N=1,2,··· are computable sequences in
X. By Lemma 1, the computable sequence of reals
{‖(I − PN )wN‖}N=1,2,··· converges to 0 effectively.
Therefore, {uN} is a computable sequence in X since
it is the effective limit of {PN wN}.

Summarizing the above arguments, we have
shown the following

Theorem 2. Suppose that X is an effectively
separable Hilbert space with the effective generating

set S consisting of linearly independent elements.
Let B and F be as in Theorem 1. Then the vari-
ational problem (2.2) has a uniquely determined so-
lution u ∈ X which is computable. The Galerkin
approximations uk of u form a computable sequence
in X, which effectively converges to u.

Remark 5. The proof of Theorem 1 in [1] is
actually done in the context of the TTE or Type 2
Theory of Effectivity (see [6, pp.2–10], in particu-
lar). The TTE provides a more differentiated for-
mulation based on a variant of the Turing machine
(Type 2 machine), and is particularly valid in han-
dling several different computability notions at the
same time and thus in the discussions of computa-
tional complexity. However, as for the computability
issue discussed in the present note, the TTE and the
Pour-El & Richards approach [5] are equivalent since
both rely on the same dense set D (see §3) of X as
the reference to computability. We here adopt the
Pour-El & Richards approach, which provides a for-
mulation closer to the way in classical analysis.
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