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Abstract: A Lagrangian submanifold in the complex Euclidean n-space Cn is called
Hamiltonian-stationary if it is a critical point of the area functional restricted to (compactly sup-
ported) Hamiltonian variations. In this article, we classify the family of Hamiltonian-stationary
Lagrangian submanifolds of Cn which are Lagrangian H-umbilical.
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1. Introduction. Let Cn be the complex
Euclidean n-space with complex structure J and
Kaehler metric 〈 , 〉. The Kaehler 2-form ω is de-
fined by ω(· , ·) = 〈J ·, ·〉. An immersion ψ : M → Cn

of an n-manifold M into Cn is called Lagrangian
if ψ∗ω = 0 on M . A vector field X on Cn is
called Hamiltonian if LXω = fω for some function
f ∈ C∞(Cn), where L is the Lie derivative. Thus,
there exists a smooth real-valued function ϕ on Cn

such that X = J∇̃ϕ, where ∇̃ is the gradient in Cn.
The diffeomorphisms of the the flux ψt of X satisfy
ψtω = ehtω. Thus they transform Lagrangian sub-
manifolds into Lagrangian submanifolds.

Oh [15] studied the following variational prob-
lem: A normal vector field ξ to a Lagrangian immer-
sion ψ : Mn → Cn is called Hamiltonian if ξ = J∇f ,
where f is a smooth function on Mn and ∇f is the
gradient of f with respect to the induced metric.

If f ∈ C∞
0 (M) and ψt : M → Cn is a variation

of ψ with ψ0 = ψ and variational vector field ξ, then
the first variation of the volume functional is

d

dt |t=0

vol(M,ψ∗
t g) = −

∫
M

f divJHdM,

where H is the mean curvature vector of the im-
mersion ψ and div is the divergence operator on
M . Critical points of this variational functional
are called Hamiltonian-stationary (or Hamiltonian-
minimal). Lagrangian submanifolds with parallel
mean curvature vector are Hamiltonian-stationary.

Hamiltonian-stationary Lagrangian submani-
folds in Cn (mostly in C2) have been studied in [1–7,
10, 12–15], among others.
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In this article, we classify the family of
Hamiltonian-stationary Lagrangian submanifolds of
Cn which are Lagrangian H-umbilical. A related re-
sult is also obtained.

2. Preliminaries. Let f : M → Cn be an
isometric immersion of a Riemannian n-manifold M
into Cn. We denote the Riemannian connections of
M and Cn by ∇ and ∇̃, respectively; and by D the
connection on the normal bundle of the submanifold.

The formulas of Gauss and Weingarten are

∇̃XY = ∇XY + h(X,Y ),(2.1)

∇̃Xξ = −AξX +DXξ(2.2)

for tangent vector fields X,Y and normal vector field
ξ. If we denote the Riemann curvature tensor of ∇
by R, then the equations of Gauss and Codazzi are
given respectively by

〈R(X,Y )Z,W 〉 = 〈h(X,W ), h(Y, Z)〉(2.3)

− 〈h(X,Z), h(Y,W )〉 ,
(∇h)(X,Y, Z) = (∇h)(Y,X,Z),(2.4)

where (∇h)(X,Y, Z) = DXh(Y, Z) − h(∇XY, Z) −
h(Y,∇XZ).

For a Lagrangian submanifold M of Cn, we also
have (cf. [11])

DXJY = J∇XY,(2.5)

〈h(X,Y ), JZ〉 = 〈h(Y, Z), JX〉(2.6)

= 〈h(Z,X), JY 〉 .
We recall some definitions and results from [9].
By definition, a Lagrangian submanifold with-

out totally geodesic points is called a Lagrangian
H-umbilical submanifold if the second fundamental
form takes the following simple form (cf. [9]):
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h(e1, e1) = λJe1, h(ej , ej) = µ, Je1, j > 1,(2.7)

h(e1, ej) = µJej , h(ej , ek) = 0, 2 ≤ j �= k ≤ n

for some functions λ, µ with respect to some suitable
orthonormal local frame field {e1, . . . , en}. Such sub-
manifolds are known to be the simplest Lagrangian
submanifolds next to the totally geodesic ones.

Let G : Nn−1 → En be an isometric immersion
of a Riemannian (n−1)-manifold into the Euclidean
n-space En and let F : I → C∗ be a unit speed curve
in C∗ = C − {0}. We may extend G : Nn−1 → En

to an immersion of I ×Nn−1 into Cn as

F ⊗G : I ×Nn−1 → C ⊗ En = Cn,(2.8)

where (F ⊗ G)(s, p) = F (s) ⊗ G(p) for s ∈ I, p ∈
Nn−1. This extension F ⊗G of G via tensor product
is called the complex extensor of G via F (or of the
submanifold Nn−1 via F ).

Proposition 1. Let ι : Sn−1 → En be the in-
clusion of a hypersphere of Em centered at the origin.
Then every complex extensor φ = F⊗ι of ι via a unit
speed curve F : I → C∗ is a Lagrangian H-umbilical
submanifold of Cn unless F is contained in a line
through the origin (which gives a totally geodesic La-
grangian submanifold ).

For F⊗ι, we choose e1 a unit vector field tangent
to the first factor and e2, . . . , en to the second factor
of I × Sn−1. Without loss of generality, we may
assume ι is the inclusion ιn0 : Sn−1(1) ⊂ En of the
unit hypersphere centered at the origin of En.

If we put F ′ = eiϕ(s) and F = r(s)eiθ(s), then
the second fundamental form of the complex exten-
sor F ⊗ ιn0 satisfies (2.7) with

λ = ϕ′(s) = κ, µ =
〈F ′, iF 〉
〈F, F 〉 = θ′(s).(2.9)

From (2.9) and Proposition 1 we see that a complex
extensor is totally geodesic if and only if µ = 0.

There exist many unit speed curves F = reiθ

whose curvature satisfies κ = mθ′ with m ∈ R.
Example 1. If F = reiθ with r = b−1 cos bs

and θ = bs, b > 0, then the curvature of F satisfies
κ = 2θ′. The associated complex extensor is called a
Lagrangian pseudo-sphere.

Example 2 (Cardioid). Let F = reiθ be the
unit speed reparametrization of G = (1 + cos t)eit.
Then F satisfies κ(s) = 3

2θ
′(s).

Example 3 (Circle). Let F = b−1eibs, b > 0.
Then F satisfies κ = θ′ = b.

Example 4 (Logarithmic spiral). Let F =
(bs/

√
1 + b2)eib−1 ln s with b > 0. Then F satisfies

κ = θ′ = b−1s−1.
Example 5. Let F =

√
s2 + b2ei tan−1(s/b),

b > 0. Then the curvature of F satisfies κ = 0.
Example 6. Consider s = iE( i

2 arccoshf ; 2),
where E( · ; k) is the elliptic integral of the second
kind with elliptic modulus k. Then s(f) is a real-
valued decreasing function for f ≥ 1. If f(s) is its
inverse function, then F =

√
feiθ with θ =

∫ s

0 f
− 3

2 ds

is a unit speed curve satisfying κ = −θ′.
3. Hamiltonian-stationary Lagrangian

submanifolds. Let ιn0 denote the inclusion of
the unit hypersphere centered at the origin and
F = r(s)eiθ(s) a unit speed curve in C∗ with θ′ �= 0.

Theorem 1. Let L : M → Cn be a Lagran-
gian H-umbilical submanifold with n ≥ 3. Then L

is Hamiltonian-stationary if and only if, up to di-
lations, L is congruent to an open portion of a La-
grangian submanifold of the following six types:

(1) A Lagrangian cylinder over a circle:

L(s, x2, . . . , xn) =
(

eias

a
, x2, . . . , xn

)
, a > 0.

(2) A complex extensor F⊗ιn0 , where F is a unit
speed curve whose curvature κ satisfies κ = θ′(s).

(3) A complex extensor F⊗ιn0 , where F is a unit
speed curve with κ = (1 − n)θ′(s).

(4) A complex extensor F⊗ιn0 , where F is a unit
speed curve with κ = (3 − n)θ′(s).

(5) A complex extensor F ⊗ ι30, where F = reiθ

is a unit speed curve with κ = br−4, b �= 0.
(6) A complex extensor F ⊗ ιn0 , n > 3, where

F = reiθ is a unit speed curve such that the curvature
κ satisfies κ �= mθ′ for any m ∈ R and

κ =
(

3 − n

2

)
θ′ + 1

2(1 − n)

κ′

(ln r)′
.

Proof . Assume L : M → Cn is Lagrangian H-
umbilical with n ≥ 3. Then, L is a Lagrangian sub-
manifold without totally geodesic points such that
the second fundamental form satisfies (2.7) for some
functions λ and µ with respect to some suitable or-
thonormal local frame field e1, . . . , en.

Let ω1, . . . , ωn denote the dual 1-forms of
e1, . . . , en and (ωj

i ), i, j = 1, . . . , n, be the connection
forms of the Lagrangian submanifold. By applying
Codazzi’s equation to (2.7), we find

e1µ = (λ− 2µ)ωj
1(ej), j > 1,(3.1)
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ejλ = (2µ− λ)ω1
j (e1), j > 1,(3.2)

(λ− 2µ)ωj
1(ek) = 0, 1 < j �= k ≤ n,(3.3)

ejµ = 3µωj
1(e1),(3.4)

µωj
1(e1) = 0, j > 1.(3.5)

It follows from (2.7) that the mean curvature
vector H is given by nH = (λ + (n − 1)µ)Je1. So,
the dual 1-form αH of JH satisfies

−nαH = (λ+ (n− 1)µ)ω1.(3.6)

Now, assume that L is Hamiltonian-stationary.
Let δ denote the co-differential operator of M .
Since the Hamiltonian-stationary condition of the
Lagrangian submanifold in Cn is characterized by
δαH = 0 (cf. [15]), so after applying δ to (3.6) and
using Cartan’s structure equations, we obtain

e1λ+(n− 1)e1µ = (λ+(n−1)µ)
n∑

j=2

ω1
j (ej).(3.7)

Case (A): M is of constant sectional curvature.
In this case, Theorem 3.1 of [9] implies that either
M is an open portion of a Lagrangian pseudo-sphere
or M is a flat manifold.

If M is an open portion of a Lagrangian pseudo-
sphere, then we have λ = 2µ which is constant onM .
Thus, (3.7) reduces to

ω1
2(e2) + · · · + ω1

n(en) = 0 on U.(3.8)

On the other hand, the Lagrangian pseudo-
sphere satisfies ω1

j (ej) = b tan bs for j > 1. Combin-
ing this with (3.8) shows that this cannot happen.

If M is flat, it follows from (2.7) and equation of
Gauss that µ = 0 identically. Since λ �= 0, it follows
from (3.1) and µ = 0 that ω1

j (ej) = 0, j = 2, . . . , n.
Combining this with (3.3) and (3.7) gives

e1λ = ω1
j (ek) = 0, 2 ≤ j, k ≤ n.(3.9)

Also, it follows from (3.2) that

ej(lnλ) = ωj
1(e1), j = 2, . . . , n.(3.10)

Let D and D⊥ denote the distributions on M

spanned by {e1} and {e2, . . . , en}, respectively. Then
D is integrable, since it is 1-dimensional. Also, it
follows from (3.9) that D⊥ is integrable with totally
geodesic leaves. Moreover, it follows from (2.7) with
µ = 0 that the leaves of D⊥ are totally geodesic in Cn

as well. Because D and D⊥ are both integrable, there
exist local coordinates {s, x2, . . . , xn} such that ∂/∂s

spans D and {∂/∂x2, . . . , ∂/∂xn} spans D⊥. Since D
is 1-dimensional, we may choose s in such way that
∂/∂s = λ−1e1.

From e1λ = 0, we have λ = λ(x2, . . . , xn). With
respect to {s, x2, . . . , xn}, (2.7) becomes

h

�
∂

∂s
,

∂

∂s

�
= J

∂

∂s
, h

�
∂

∂s
,

∂

∂xj

�
= h

�
∂

∂xj
,

∂

∂xk

�
= 0

(3.11)

for j, k = 2, . . . , n. Let Nn−1 be an integral sub-
manifold of D⊥. Then Nn−1 is totally geodesic in
Cn. Thus, Nn−1 is an open portion of a Euclidean
(n−1)-space En−1. Hence, M is isometric to an open
portion of the warped product manifold λ−1I×En−1

with warped product metric:

g = λ−2ds2 + dx2
2 + dx2

3 + · · · + dx2
n,(3.12)

where I is an open interval on which λ−1 is defined.
Put λj = ∂λ

∂xj
, λjk = ∂2λ

∂xj∂xk
for j, k = 2, . . . , n.

From (3.12) we find

(3.13)
∇ ∂

∂s

∂

∂s
=

n∑
k=2

λk

λ

∂

∂xk
, ∇ ∂

∂s

∂

∂xj
= −λj

λ

∂

∂s
,

∇ ∂
∂xj

∂

∂xk
= 0,

for 2 ≤ j, k ≤ n. By applying (3.13) we find

R

(
∂

∂s
,
∂

∂xj

)
∂

∂s
= −

n∑
k=2

λjk

λ

∂

∂xk
, j = 2, . . . , n.

Since M is flat, this implies that λjk = 0 for j, k =
2, . . . , n. Therefore, we have

λ = a+ α2x2 + · · · + αnxn,(3.14)

for some a, α2, . . . , αn ∈ R. From (3.11), (3.13),
(3.14) and the formula of Gauss, we obtain

Lss =
n∑

k=2

αk

λ
Lxk

+ iLs, Lsxj = −αj

λ
Ls,(3.15)

Lxjxk
= 0, j, k > 1.

Solving the last equation in (3.15) yields

L =
n∑

j=2

Pj(s)xj +D(s),(3.16)

for some Cn-valued functions P2, . . . , Pn, D.
By applying (3.14), (3.15) and (3.16), we find

αjP
′
j(s) = 0,(3.17)
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αjP
′
k(s) + αkP

′
j(s) = 0, 2 ≤ j �= k ≤ n,(3.18)

aP ′
j(s) + αjD

′(s) = 0, j, k = 2, . . . , n.(3.19)

If α2, . . . , αn are not all zero, say α2 �= 0. Then,
(3.17) gives P ′

2 = 0. Thus, by (3.18) and (3.19),
we have P ′

3 = · · · = P ′
n = D′ = 0 as well. Hence,

P2, . . . , Pn and D are constant vectors, which is im-
possible in views of (3.16). Therefore, we must have
α2 = · · · = αn = 0 and λ = a �= 0. So, from (3.19)
we know that P2, . . . , Pn are orthonormal constant
vectors in Cn. Consequently, (3.16) becomes

L = D(x1) + c2x2 + · · · + cnxn(3.20)

for c2, . . . , cn ∈ Cn. Substituting this into the first
equation of (3.15) yields D(x1) = c1e

ix1 . Hence, L
is a Lagrangian cylinder over a circle. Thus, after
choosing suitable initial conditions, we get case (1).

Case (B): M contains no open subset of con-
stant curvature. By Theorem 4.1 of 9), M is congru-
ent to a complex extensor φ = F ⊗ ιn0 of ιn0 . Thus, M
is a Lagrangian H-umbilical submanifold satisfying
(2.7) with λ �= 2µ and µ �= 0.

For the complex extensor F ⊗ ιn0 , we have

∂φ

∂s
= F ′(s) ⊗ ιn0 , ejφ = F ⊗ ej , j > 1.(3.21)

Thus, the metric g of φ is given by

g = ds2 + f(s)g1,(3.22)

where f = 〈F, F 〉 and g1 is the standard metric of
the unit n-sphere. As before, we choose {e1, . . . , en}
with e1 = ∂/∂s so that we have (2.7) with

λ = ϕ′(s), µ =
〈F ′, iF 〉

f
, F ′(s) = eiϕ(s).(3.23)

Moreover, it follows from (3.22) that

ω1
2(e2) = · · · = ω1

n(en) = − f ′

2f
.(3.24)

Since F (s) is unit speed, we have

F ′′ = iκF ′, F = 〈F, F ′〉F ′ − 〈F ′, iF 〉 iF ′,(3.25)

where κ is the curvature of F . It follows from (3.23)
and the first equation of (3.25) that

λ = κ.(3.26)

From the second equation in (3.25) we find

4 〈F, iF ′〉2 = 4f − f ′2 ≥ 0.(3.27)

Thus, after replacing s by −s if necessary, we have

〈F ′, iF 〉 =
1
2

√
4f − f ′2.(3.28)

If 4f = f2 holds on an open interval I0, then
〈F, iF ′〉 = 0 on I0. Hence, F (s) is parallel to F ′(s)
for s ∈ I0, which implies that F : I0 → C∗ is an
open part of a line through the origin. So, according
to Lemma 2.1, the complex extensor φ has totally
geodesic points which is a contraction.

From the first equation in (3.25), we find f ′′ =
2 − 2κ 〈F ′, iF 〉 . Combining this with (3.28) yields

κ(s) =
2 − f ′′(s)√

4f(s) − f ′2(s)
.(3.29)

Hence, (3.23), (3.26), (3.28) and (3.29) give

κ = λ =
2 − f ′′√
4f − f ′2 , µ = θ′ =

√
4f − f ′2

2f
.(3.30)

Due to f ′ = 2 〈F, F ′〉 and (3.28), the second
equation in (3.25) can be written as

F ′(s) =
f ′(s) + i

√
4f(s) − f ′2(s)

2f(s)
F (s).(3.31)

Assume f is defined on a open interval I � 0.
After solving (3.31) and using |F ′| = 1, we know
that, up to rotations about the origin, F is given by

F =
√
f exp

(
i

2

∫ s

0

�
4f − f ′2

f
ds

)
.(3.32)

Since µ �= 0 and λ �= 2µ, (3.3) and (3.5) give

ωj
1(e1) = 0, ω1

j (ej) =
e1µ

2µ− λ
, ω1

j (ek) = 0(3.33)

for 2 ≤ j �= k ≤ n. By substituting the second
equation of (3.33) into (3.7) we find

(2µ− λ)λ′ = (n− 1)(2λ+ (n− 3)µ)µ′.(3.34)

So, by combining (3.30) and (3.34) we obtain

2(4f − f ′2)(fψ′ + (n− 2)f ′ψ) + f ′ψ2 = 0,(3.35)

where

ψ = 2ff ′′ + (n− 3)f ′2 + 4(2 − n)f.(3.36)

Since f ′ = 2 〈F, F 〉 and f ′′ = 2+2κ 〈F, iF ′〉, the
function ψ can be written as

ψ = 4(κf − (n− 3) 〈F, iF ′〉) 〈F, iF ′〉 .(3.37)

Case (B.i): f is a polynomial in s. A direct
computation shows that the only polynomials which
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satisfy (3.35) are of degree 0 or 2. If f is of degree
2, the leading coefficient must be one. For those
polynomials the function ψ in (3.36) is constant.

If f is of degree zero, we may put f = b−2 for
some b > 0. So, from (3.30) we find κ = θ′ = b,
which gives case (2) of the theorem.

If f = s2 + bs+ c, then after applying a suitable
translation in s, we get f = s2 + a for some real
number a. Thus, by (3.29) we get κ = 0. Moreover,
it is easy to verify that under f = s2 + a, (3.32)
holds if and only if either n = 3 or a = 0. The
later case cannot occurs, since the Lagrangian H-
umbilical submanifold has no totally geodesic points.
Therefore, we obtain case (4) with n = 3.

Case (B.ii): f is not a polynomial in s. The
function ψ given by (3.36) is non-constant. More-
over, (3.24) and (3.33) yields e1µ �= 0.

Case (B.ii.a): λ = mµ �= 0 for some m ∈ R.
Since e1µ �= 0, after substituting λ = mµ into (3.34),
we find (n+m−3)(n+m−1) = 0, which gives cases
(3) and (4).

Case (B.ii.b): λ �= cµ for any c ∈ R. By
applying (3.27), and (3.37), we obtain from (3.35)
that

2f2κ′ = (1 − n)f ′(2fκ+ (3 − n) 〈F, iF ′〉).(3.38)

From |F ′| = 1 we have r2θ′2 + r′2 = 1. Without loss
of generality, we may assume that θ′ = r−1

√
1 − r′2.

Thus, from F = r(s)eiθ(s) and (3.38), we obtain

rκ′ + (n− 1)(2κ+ (n− 3)θ′)r′ = 0,

which gives case (5) for n = 3 and case (6) for n > 3.
The converse can be verify by direct computa-

tion.
4. Complex extensors with parallel mean

curvature vector.
Theorem 2. A complex extensor F ⊗ ιn0 of ιn0

via a unit speed curve F in C∗ has parallel mean
curvature vector if and only if either (1) the complex
extensor is a minimal Lagrangian submanifold, or
(2) F is a circle centered at the origin.

Proof . We already know that the complex ex-
tensor F ⊗ ιn0 is a non-totally geodesic Lagrangian
submanifold whose second fundamental form sat-
isfies (2.7) for some functions λ and µ with re-
spect to some suitable orthonormal local frame field
e1, . . . , en.

Since the mean curvature vector H is given by

H =
1
n

(λ+ (n− 1)µ)Je1,(4.1)

the complex extensor φ has parallel mean curvature
vector if and only if L is minimal or λ+ (n− 1)µ is
a nonzero constant and ∇e1 = 0.

Now, assume that F ⊗ ιn0 is non-minimal. Then
from ∇e1 = 0 we have ωj

1(ek) = 0 for j, k = 1, . . . , n.
Combining this with (3.1) shows that µ is constant.

On the other hand, since µ = 1
2f

√
4f − f ′2, af-

ter differentiating µ, we find

(ff ′′ − f ′2 + 2f)f ′ = 0.(4.2)

If f ′ = 0, f is a positive constant. Thus, F is
a circle centered at the origin; hence the complex
extensor F ⊗ ιn0 has parallel mean curvature vector.

When ff ′′ − f ′2 + 2f = 0 holds, then after ap-
plying a suitable translation in s and replacing s by
−s if necessary, we obtain

f = s2, f = 4

b2
sinh2

�
bs

2

�
, or f = 4

b2
sin2

�
bs

2

�
,

according to c = 0, c = b2 > 0, or c = −b2 < 0.
If f = s2, we have 4f = f ′2. So, the complex

extensor is totally geodesic, which is a contradiction.
If f = 4

b2 sinh2
(

bs
2

)
holds, we get 4f < f ′2. This

is impossible due to (3.27).
If f = 4

b2 sin2
(

bs
2

)
, then we have

√
4f − f ′2 =

4
b sin2

(
bs
2

)
. Thus (3.30) gives λ = 2µ. So, F ⊗ ιn0

is a Lagrangian pseudo-sphere. This is impossible,
since ∇e1 �= 0 for Lagrangian pseudo-spheres.

5. Remarks.
Remark 1. If a unit speed curve F satisfies

κ = mθ′(s) for somem ∈ R, then f = 〈F, F 〉 satisfies

2ff ′′ −mf ′2 + 4(m− 1)f = 0.(5.1)

After solving this differential equation for f ′ we get

4f − f ′2 = αfm(5.2)

for some α > 0. Whenever 4f − f ′2 > 0, we may put
α = 4b2, b > 0. Thus, if s(f) is an anti-derivative of

1

2
√
f − b2fm

,

the inverse function f of s satisfies (5.1). Thus,
by (3.32), we know that F =

√
feiθ with θ =∫ s

0
bf

m
2 −1ds is a unit speed curve satisfying κ = mθ′.

Remark 2. Put y1 = f, y2 = f ′ and y3 = f ′′.
Then equation (3.35) is equivalent to the system:

y′1 = y2, y′2 = y3,

y′3 =
y2

4y2
1(4y1 − y2

2)
{
4(4(n− 2)n+ (n2 − 4n+ 3)y4

2

− y3(4n− 8 + y3))y2
1 − 4(n− 1)(2n− 4 − y3)y1y2

2

}
.
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Fig. 1. κ = −5θ′, θ(0) = 0, r(0) = 1, ϕ(0) = π
2
.

Fig. 2. κ = 6r−4, θ(0) = 0, r(0) = 1, ϕ(0) = π
2
.

It follows from Picard’s theorem that, for a given ini-
tial conditions: y1(s0) = y0

1 , y2(s0) = y0
2 , y3(s0) = y0

3

at s0 with y0
1 > 0 and 4y0

1 > y0
2 , the initial value

problem has a unique solution in some open interval
containing s0. So, (3.35) admits infinitely many pos-
itive solutions f with 4f > f ′2. Each f gives rise to
a unit speed curve F whose curvature satisfies

rκ′ + (n− 1)(2κ+ (n− 3)θ′)r′ = 0.

So, there are infinitely many Hamiltonian-stationary
Lagrangian submanifolds of type (6) of Theorem 1.

Acknowledgement. The curves F = reiθ re-
lated with Theorem 1 given above were produced by
Prof. Yoshihiko Tazawa of Tokyo Denki University.
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