Classification of a family of Hamiltonian-stationary Lagrangian submanifolds in \mathbb{C}^n

By Bang-Yen Chen

Department of Mathematics, Michigan State University, East Lansing, Michigan 48864-1027, U.S.A.

(Communicated by Heisuke HIRONAKA, M.J.A., Nov. 13, 2006)

Abstract: A Lagrangian submanifold in the complex Euclidean n-space \mathbb{C}^n is called Hamiltonian-stationary if it is a critical point of the area functional restricted to (compactly supported) Hamiltonian variations. In this article, we classify the family of Hamiltonian-stationary Lagrangian submanifolds of \mathbb{C}^n which are Lagrangian H-umbilical.

Key words: Hamiltonian-stationary; *H*-umbilical submanifold; complex extensor.

1. Introduction. Let \mathbb{C}^n be the complex Euclidean n-space with complex structure J and Kaehler metric $\langle \ , \ \rangle$. The Kaehler 2-form ω is defined by $\omega(\cdot,\cdot)=\langle J\cdot,\cdot\rangle$. An immersion $\psi:M\to \mathbb{C}^n$ of an n-manifold M into \mathbb{C}^n is called Lagrangian if $\psi^*\omega=0$ on M. A vector field X on \mathbb{C}^n is called Hamiltonian if $\mathcal{L}_X\omega=f\omega$ for some function $f\in C^\infty(\mathbb{C}^n)$, where \mathcal{L} is the Lie derivative. Thus, there exists a smooth real-valued function φ on \mathbb{C}^n such that $X=J\tilde{\nabla}\varphi$, where $\tilde{\nabla}$ is the gradient in \mathbb{C}^n . The diffeomorphisms of the the flux ψ_t of X satisfy $\psi_t\omega=e^{h_t}\omega$. Thus they transform Lagrangian submanifolds into Lagrangian submanifolds.

Oh [15] studied the following variational problem: A normal vector field ξ to a Lagrangian immersion $\psi: M^n \to \mathbf{C}^n$ is called Hamiltonian if $\xi = J\nabla f$, where f is a smooth function on M^n and ∇f is the gradient of f with respect to the induced metric.

If $f \in C_0^{\infty}(M)$ and $\psi_t : M \to \mathbf{C}^n$ is a variation of ψ with $\psi_0 = \psi$ and variational vector field ξ , then the first variation of the volume functional is

$$\frac{d}{dt}_{|_{t=0}}\operatorname{vol}(M, \psi_t^* g) = -\int_M f \operatorname{div} JH dM,$$

where H is the mean curvature vector of the immersion ψ and div is the divergence operator on M. Critical points of this variational functional are called Hamiltonian-stationary (or Hamiltonianminimal). Lagrangian submanifolds with parallel mean curvature vector are Hamiltonian-stationary.

Hamiltonian-stationary Lagrangian submanifolds in \mathbb{C}^n (mostly in \mathbb{C}^2) have been studied in [1–7, 10, 12–15], among others.

2000 Mathematics Subject Classiff cation. Primary 53D12; Secondary 53C40. In this article, we classify the family of Hamiltonian-stationary Lagrangian submanifolds of \mathbb{C}^n which are Lagrangian H-umbilical. A related result is also obtained.

2. Preliminaries. Let $f: M \to \mathbb{C}^n$ be an isometric immersion of a Riemannian n-manifold M into \mathbb{C}^n . We denote the Riemannian connections of M and \mathbb{C}^n by ∇ and $\tilde{\nabla}$, respectively; and by D the connection on the normal bundle of the submanifold.

The formulas of Gauss and Weingarten are

(2.1)
$$\tilde{\nabla}_X Y = \nabla_X Y + h(X, Y),$$

for tangent vector fields X, Y and normal vector field ξ . If we denote the Riemann curvature tensor of ∇ by R, then the equations of Gauss and Codazzi are given respectively by

(2.3)
$$\langle R(X,Y)Z,W\rangle = \langle h(X,W),h(Y,Z)\rangle - \langle h(X,Z),h(Y,W)\rangle,$$

$$(2.4) \qquad (\nabla h)(X, Y, Z) = (\nabla h)(Y, X, Z),$$

where
$$(\nabla h)(X, Y, Z) = D_X h(Y, Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z)$$
.

For a Lagrangian submanifold M of \mathbb{C}^n , we also have (cf. [11])

$$(2.5) D_X JY = J\nabla_X Y,$$

(2.6)
$$\langle h(X,Y), JZ \rangle = \langle h(Y,Z), JX \rangle$$

= $\langle h(Z,X), JY \rangle$.

We recall some definitions and results from [9]. By definition, a Lagrangian submanifold without totally geodesic points is called a *Lagrangian H-umbilical submanifold* if the second fundamental form takes the following simple form (cf. [9]):

(2.7)
$$h(e_1, e_1) = \lambda J e_1, \ h(e_j, e_j) = \mu, J e_1, \ j > 1,$$

 $h(e_1, e_j) = \mu J e_j, \ h(e_j, e_k) = 0, \ 2 \le j \ne k \le n$

for some functions λ, μ with respect to some suitable orthonormal local frame field $\{e_1, \ldots, e_n\}$. Such submanifolds are known to be the simplest Lagrangian submanifolds next to the totally geodesic ones.

Let $G: N^{n-1} \to \mathbf{E}^n$ be an isometric immersion of a Riemannian (n-1)-manifold into the Euclidean n-space \mathbf{E}^n and let $F: I \to \mathbf{C}^*$ be a unit speed curve in $\mathbf{C}^* = \mathbf{C} - \{0\}$. We may extend $G: N^{n-1} \to \mathbf{E}^n$ to an immersion of $I \times N^{n-1}$ into \mathbf{C}^n as

$$(2.8) F \otimes G : I \times N^{n-1} \to \mathbf{C} \otimes \mathbf{E}^n = \mathbf{C}^n,$$

where $(F \otimes G)(s, p) = F(s) \otimes G(p)$ for $s \in I$, $p \in N^{n-1}$. This extension $F \otimes G$ of G via tensor product is called the *complex extensor* of G via F (or of the submanifold N^{n-1} via F).

Proposition 1. Let $\iota: S^{n-1} \to \mathbf{E}^n$ be the inclusion of a hypersphere of \mathbf{E}^m centered at the origin. Then every complex extensor $\phi = F \otimes \iota$ of ι via a unit speed curve $F: I \to \mathbf{C}^*$ is a Lagrangian H-umbilical submanifold of \mathbf{C}^n unless F is contained in a line through the origin (which gives a totally geodesic Lagrangian submanifold).

For $F \otimes \iota$, we choose e_1 a unit vector field tangent to the first factor and e_2, \ldots, e_n to the second factor of $I \times S^{n-1}$. Without loss of generality, we may assume ι is the inclusion $\iota_0^n : S^{n-1}(1) \subset \mathbf{E}^n$ of the unit hypersphere centered at the origin of \mathbf{E}^n .

If we put $F' = e^{i\varphi(s)}$ and $F = r(s)e^{i\theta(s)}$, then the second fundamental form of the complex extensor $F \otimes \iota_0^n$ satisfies (2.7) with

(2.9)
$$\lambda = \varphi'(s) = \kappa, \quad \mu = \frac{\langle F', iF \rangle}{\langle F, F \rangle} = \theta'(s).$$

From (2.9) and Proposition 1 we see that a complex extensor is totally geodesic if and only if $\mu = 0$.

There exist many unit speed curves $F = re^{i\theta}$ whose curvature satisfies $\kappa = m\theta'$ with $m \in \mathbf{R}$.

Example 1. If $F = re^{i\theta}$ with $r = b^{-1}\cos bs$ and $\theta = bs$, b > 0, then the curvature of F satisfies $\kappa = 2\theta'$. The associated complex extensor is called a Lagrangian pseudo-sphere.

Example 2 (Cardioid). Let $F = re^{i\theta}$ be the unit speed reparametrization of $G = (1 + \cos t)e^{it}$. Then F satisfies $\kappa(s) = \frac{3}{2}\theta'(s)$.

Example 3 (Circle). Let $F = b^{-1}e^{ibs}, b > 0$. Then F satisfies $\kappa = \theta' = b$.

Example 4 (Logarithmic spiral). Let $F = (bs/\sqrt{1+b^2})e^{ib^{-1}\ln s}$ with b > 0. Then F satisfies $\kappa = \theta' = b^{-1}s^{-1}$.

Example 5. Let $F = \sqrt{s^2 + b^2}e^{i\tan^{-1}(s/b)}$, b > 0. Then the curvature of F satisfies $\kappa = 0$.

Example 6. Consider $s=iE(\frac{i}{2}\operatorname{arccosh} f;2)$, where $E(\cdot;k)$ is the elliptic integral of the second kind with elliptic modulus k. Then s(f) is a real-valued decreasing function for $f\geq 1$. If f(s) is its inverse function, then $F=\sqrt{f}e^{i\theta}$ with $\theta=\int_0^s f^{-\frac{3}{2}}ds$ is a unit speed curve satisfying $\kappa=-\theta'$.

3. Hamiltonian-stationary Lagrangian submanifolds. Let ι_0^n denote the inclusion of the unit hypersphere centered at the origin and $F = r(s)e^{i\theta(s)}$ a unit speed curve in \mathbf{C}^* with $\theta' \neq 0$.

Theorem 1. Let $L: M \to \mathbf{C}^n$ be a Lagrangian H-umbilical submanifold with $n \geq 3$. Then L is Hamiltonian-stationary if and only if, up to dilations, L is congruent to an open portion of a Lagrangian submanifold of the following six types:

(1) A Lagrangian cylinder over a circle:

$$L(s, x_2, ..., x_n) = \left(\frac{e^{ias}}{a}, x_2, ..., x_n\right), a > 0.$$

- (2) A complex extensor $F \otimes \iota_0^n$, where F is a unit speed curve whose curvature κ satisfies $\kappa = \theta'(s)$.
- (3) A complex extensor $F \otimes \iota_0^n$, where F is a unit speed curve with $\kappa = (1 n)\theta'(s)$.
- (4) A complex extensor $F \otimes \iota_0^n$, where F is a unit speed curve with $\kappa = (3 n)\theta'(s)$.
- (5) A complex extensor $F \otimes \iota_0^3$, where $F = re^{i\theta}$ is a unit speed curve with $\kappa = br^{-4}$, $b \neq 0$.
- (6) A complex extensor $F \otimes \iota_0^n, n > 3$, where $F = re^{i\theta}$ is a unit speed curve such that the curvature κ satisfies $\kappa \neq m\theta'$ for any $m \in \mathbf{R}$ and

$$\kappa = \left(\frac{3-n}{2}\right)\theta' + \frac{1}{2(1-n)}\frac{\kappa'}{(\ln r)'}.$$

Proof. Assume $L: M \to \mathbb{C}^n$ is Lagrangian H-umbilical with $n \geq 3$. Then, L is a Lagrangian submanifold without totally geodesic points such that the second fundamental form satisfies (2.7) for some functions λ and μ with respect to some suitable orthonormal local frame field e_1, \ldots, e_n .

Let $\omega^1, \ldots, \omega^n$ denote the dual 1-forms of e_1, \ldots, e_n and $(\omega_i^j), i, j = 1, \ldots, n$, be the connection forms of the Lagrangian submanifold. By applying Codazzi's equation to (2.7), we find

(3.1)
$$e_1\mu = (\lambda - 2\mu)\omega_1^j(e_i), \quad j > 1,$$

(3.2)
$$e_j \lambda = (2\mu - \lambda)\omega_i^1(e_1), \quad j > 1,$$

$$(3.3) (\lambda - 2\mu)\omega_1^j(e_k) = 0, \ 1 < j \neq k \le n,$$

(3.4)
$$e_j \mu = 3\mu \omega_1^j(e_1),$$

(3.5)
$$\mu \omega_1^j(e_1) = 0, \quad j > 1.$$

It follows from (2.7) that the mean curvature vector H is given by $nH = (\lambda + (n-1)\mu)Je_1$. So, the dual 1-form α_H of JH satisfies

$$(3.6) -n\alpha_H = (\lambda + (n-1)\mu)\omega^1.$$

Now, assume that L is Hamiltonian-stationary. Let δ denote the co-differential operator of M. Since the Hamiltonian-stationary condition of the Lagrangian submanifold in \mathbb{C}^n is characterized by $\delta \alpha_H = 0$ (cf. [15]), so after applying δ to (3.6) and using Cartan's structure equations, we obtain

(3.7)
$$e_1\lambda + (n-1)e_1\mu = (\lambda + (n-1)\mu)\sum_{j=2}^n \omega_j^1(e_j).$$

Case (A): M is of constant sectional curvature. In this case, Theorem 3.1 of [9] implies that either M is an open portion of a Lagrangian pseudo-sphere or M is a flat manifold.

If M is an open portion of a Lagrangian pseudosphere, then we have $\lambda = 2\mu$ which is constant on M. Thus, (3.7) reduces to

(3.8)
$$\omega_2^1(e_2) + \dots + \omega_n^1(e_n) = 0$$
 on U .

On the other hand, the Lagrangian pseudosphere satisfies $\omega_j^1(e_j) = b \tan bs$ for j > 1. Combining this with (3.8) shows that this cannot happen.

If M is flat, it follows from (2.7) and equation of Gauss that $\mu = 0$ identically. Since $\lambda \neq 0$, it follows from (3.1) and $\mu = 0$ that $\omega_j^1(e_j) = 0, j = 2, \ldots, n$. Combining this with (3.3) and (3.7) gives

(3.9)
$$e_1 \lambda = \omega_i^1(e_k) = 0, \quad 2 \le j, k \le n.$$

Also, it follows from (3.2) that

(3.10)
$$e_i(\ln \lambda) = \omega_1^j(e_1), \quad j = 2, \dots, n.$$

Let \mathcal{D} and \mathcal{D}^{\perp} denote the distributions on M spanned by $\{e_1\}$ and $\{e_2, \ldots, e_n\}$, respectively. Then \mathcal{D} is integrable, since it is 1-dimensional. Also, it follows from (3.9) that \mathcal{D}^{\perp} is integrable with totally geodesic leaves. Moreover, it follows from (2.7) with $\mu = 0$ that the leaves of \mathcal{D}^{\perp} are totally geodesic in \mathbb{C}^n as well. Because \mathcal{D} and \mathcal{D}^{\perp} are both integrable, there exist local coordinates $\{s, x_2, \ldots, x_n\}$ such that $\partial/\partial s$

spans \mathcal{D} and $\{\partial/\partial x_2, \dots, \partial/\partial x_n\}$ spans \mathcal{D}^{\perp} . Since \mathcal{D} is 1-dimensional, we may choose s in such way that $\partial/\partial s = \lambda^{-1}e_1$.

From $e_1\lambda = 0$, we have $\lambda = \lambda(x_2, \dots, x_n)$. With respect to $\{s, x_2, \dots, x_n\}$, (2.7) becomes

(3.11)
$$h\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial s}\right) = J\left(\frac{\partial}{\partial s}, h\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial x_i}\right)\right) = h\left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_k}\right) = 0$$

for $j,k=2,\ldots,n$. Let N^{n-1} be an integral submanifold of \mathcal{D}^{\perp} . Then N^{n-1} is totally geodesic in \mathbb{C}^n . Thus, N^{n-1} is an open portion of a Euclidean (n-1)-space \mathbb{E}^{n-1} . Hence, M is isometric to an open portion of the warped product manifold $_{\lambda^{-1}}I \times \mathbb{E}^{n-1}$ with warped product metric:

(3.12)
$$g = \lambda^{-2} ds^2 + dx_2^2 + dx_3^2 + \dots + dx_n^2,$$

where I is an open interval on which λ^{-1} is defined. Put $\lambda_j = \frac{\partial \lambda}{\partial x_j}$, $\lambda_{jk} = \frac{\partial^2 \lambda}{\partial x_j \partial x_k}$ for $j, k = 2, \dots, n$. From (3.12) we find

(3.13)
$$\nabla_{\frac{\partial}{\partial s}} \frac{\partial}{\partial s} = \sum_{k=2}^{n} \frac{\lambda_{k}}{\lambda} \frac{\partial}{\partial x_{k}}, \quad \nabla_{\frac{\partial}{\partial s}} \frac{\partial}{\partial x_{j}} = -\frac{\lambda_{j}}{\lambda} \frac{\partial}{\partial s},$$
$$\nabla_{\frac{\partial}{\partial x_{j}}} \frac{\partial}{\partial x_{k}} = 0,$$

for $2 \le j, k \le n$. By applying (3.13) we find

$$R\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial x_j}\right) \frac{\partial}{\partial s} = -\sum_{k=2}^n \frac{\lambda_{jk}}{\lambda} \frac{\partial}{\partial x_k}, \quad j = 2, \dots, n.$$

Since M is flat, this implies that $\lambda_{jk} = 0$ for $j, k = 2, \ldots, n$. Therefore, we have

$$(3.14) \lambda = a + \alpha_2 x_2 + \dots + \alpha_n x_n,$$

for some $a, \alpha_2, \ldots, \alpha_n \in \mathbf{R}$. From (3.11), (3.13), (3.14) and the formula of Gauss, we obtain

(3.15)
$$L_{ss} = \sum_{k=2}^{n} \frac{\alpha_k}{\lambda} L_{x_k} + iL_s, \quad L_{sx_j} = -\frac{\alpha_j}{\lambda} L_s,$$

 $L_{x_j x_k} = 0, \quad j, k > 1.$

Solving the last equation in (3.15) yields

(3.16)
$$L = \sum_{j=2}^{n} P_j(s) x_j + D(s),$$

for some \mathbb{C}^n -valued functions P_2, \dots, P_n, D . By applying (3.14), (3.15) and (3.16), we find

(3.17)
$$\alpha_i P_i'(s) = 0,$$

(3.18)
$$\alpha_i P'_k(s) + \alpha_k P'_i(s) = 0, \ 2 \le j \ne k \le n,$$

(3.19)
$$aP'_{i}(s) + \alpha_{i}D'(s) = 0, \quad j, k = 2, \dots, n.$$

If $\alpha_2, \ldots, \alpha_n$ are not all zero, say $\alpha_2 \neq 0$. Then, (3.17) gives $P'_2 = 0$. Thus, by (3.18) and (3.19), we have $P'_3 = \cdots = P'_n = D' = 0$ as well. Hence, P_2, \ldots, P_n and D are constant vectors, which is impossible in views of (3.16). Therefore, we must have $\alpha_2 = \cdots = \alpha_n = 0$ and $\lambda = a \neq 0$. So, from (3.19) we know that P_2, \ldots, P_n are orthonormal constant vectors in \mathbb{C}^n . Consequently, (3.16) becomes

$$(3.20) L = D(x_1) + c_2 x_2 + \dots + c_n x_n$$

for $c_2, \ldots, c_n \in \mathbb{C}^n$. Substituting this into the first equation of (3.15) yields $D(x_1) = c_1 e^{ix_1}$. Hence, L is a Lagrangian cylinder over a circle. Thus, after choosing suitable initial conditions, we get case (1).

Case (B): M contains no open subset of constant curvature. By Theorem 4.1 of $^{9)}$, M is congruent to a complex extensor $\phi = F \otimes \iota_0^n$ of ι_0^n . Thus, M is a Lagrangian H-umbilical submanifold satisfying (2.7) with $\lambda \neq 2\mu$ and $\mu \neq 0$.

For the complex extensor $F \otimes \iota_0^n$, we have

(3.21)
$$\frac{\partial \phi}{\partial s} = F'(s) \otimes \iota_0^n, \ e_j \phi = F \otimes e_j, \ j > 1.$$

Thus, the metric q of ϕ is given by

$$(3.22) g = ds^2 + f(s)g_1,$$

where $f = \langle F, F \rangle$ and g_1 is the standard metric of the unit *n*-sphere. As before, we choose $\{e_1, \ldots, e_n\}$ with $e_1 = \partial/\partial s$ so that we have (2.7) with

(3.23)
$$\lambda = \varphi'(s), \ \mu = \frac{\langle F', iF \rangle}{f}, \ F'(s) = e^{i\varphi(s)}.$$

Moreover, it follows from (3.22) that

(3.24)
$$\omega_2^1(e_2) = \dots = \omega_n^1(e_n) = -\frac{f'}{2f}.$$

Since F(s) is unit speed, we have

$$(3.25) \quad F'' = i\kappa F', \quad F = \langle F, F' \rangle F' - \langle F', iF \rangle iF'.$$

where κ is the curvature of F. It follows from (3.23) and the first equation of (3.25) that

$$(3.26) \lambda = \kappa.$$

From the second equation in (3.25) we find

(3.27)
$$4 \langle F, iF' \rangle^2 = 4f - f'^2 \ge 0.$$

Thus, after replacing s by -s if necessary, we have

(3.28)
$$\langle F', iF \rangle = \frac{1}{2} \sqrt{4f - f'^2}.$$

If $4f = f^2$ holds on an open interval I_0 , then $\langle F, iF' \rangle = 0$ on I_0 . Hence, F(s) is parallel to F'(s) for $s \in I_0$, which implies that $F: I_0 \to \mathbf{C}^*$ is an open part of a line through the origin. So, according to Lemma 2.1, the complex extensor ϕ has totally geodesic points which is a contraction.

From the first equation in (3.25), we find $f'' = 2 - 2\kappa \langle F', iF \rangle$. Combining this with (3.28) yields

(3.29)
$$\kappa(s) = \frac{2 - f''(s)}{\sqrt{4f(s) - f'^2(s)}}.$$

Hence, (3.23), (3.26), (3.28) and (3.29) give

(3.30)
$$\kappa = \lambda = \frac{2 - f''}{\sqrt{4f - f'^2}}, \ \mu = \theta' = \frac{\sqrt{4f - f'^2}}{2f}.$$

Due to $f' = 2 \langle F, F' \rangle$ and (3.28), the second equation in (3.25) can be written as

(3.31)
$$F'(s) = \frac{f'(s) + i\sqrt{4f(s) - f'^2(s)}}{2f(s)}F(s).$$

Assume f is defined on a open interval $I \ni 0$. After solving (3.31) and using |F'| = 1, we know that, up to rotations about the origin, F is given by

(3.32)
$$F = \sqrt{f} \exp\left(\frac{i}{2} \int_0^s \frac{\sqrt{4f - f'^2}}{f} ds\right).$$

Since $\mu \neq 0$ and $\lambda \neq 2\mu$, (3.3) and (3.5) give

(3.33)
$$\omega_1^j(e_1) = 0$$
, $\omega_j^1(e_j) = \frac{e_1 \mu}{2\mu - \lambda}$, $\omega_j^1(e_k) = 0$

for $2 \le j \ne k \le n$. By substituting the second equation of (3.33) into (3.7) we find

$$(3.34) \qquad (2\mu - \lambda)\lambda' = (n-1)(2\lambda + (n-3)\mu)\mu'.$$

So, by combining (3.30) and (3.34) we obtain

$$(3.35) \quad 2(4f - f'^2)(f\psi' + (n-2)f'\psi) + f'\psi^2 = 0,$$

where

(3.36)
$$\psi = 2ff'' + (n-3)f'^2 + 4(2-n)f.$$

Since $f'=2\langle F,F\rangle$ and $f''=2+2\kappa\langle F,iF'\rangle$, the function ψ can be written as

(3.37)
$$\psi = 4(\kappa f - (n-3) \langle F, iF' \rangle) \langle F, iF' \rangle.$$

Case (B.i): f is a polynomial in s. A direct computation shows that the only polynomials which

satisfy (3.35) are of degree 0 or 2. If f is of degree 2, the leading coefficient must be one. For those polynomials the function ψ in (3.36) is constant.

If f is of degree zero, we may put $f = b^{-2}$ for some b > 0. So, from (3.30) we find $\kappa = \theta' = b$, which gives case (2) of the theorem.

If $f = s^2 + bs + c$, then after applying a suitable translation in s, we get $f = s^2 + a$ for some real number a. Thus, by (3.29) we get $\kappa = 0$. Moreover, it is easy to verify that under $f = s^2 + a$, (3.32) holds if and only if either n = 3 or a = 0. The later case cannot occurs, since the Lagrangian H-umbilical submanifold has no totally geodesic points. Therefore, we obtain case (4) with n = 3.

Case (B.ii): f is not a polynomial in s. The function ψ given by (3.36) is non-constant. Moreover, (3.24) and (3.33) yields $e_1\mu \neq 0$.

Case (B.ii.a): $\lambda = m\mu \neq 0$ for some $m \in \mathbf{R}$. Since $e_1\mu \neq 0$, after substituting $\lambda = m\mu$ into (3.34), we find (n+m-3)(n+m-1)=0, which gives cases (3) and (4).

Case (B.ii.b): $\lambda \neq c\mu$ for any $c \in \mathbf{R}$. By applying (3.27), and (3.37), we obtain from (3.35) that

(3.38)
$$2f^2\kappa' = (1-n)f'(2f\kappa + (3-n)\langle F, iF'\rangle).$$

From |F'| = 1 we have $r^2\theta'^2 + r'^2 = 1$. Without loss of generality, we may assume that $\theta' = r^{-1}\sqrt{1 - r'^2}$. Thus, from $F = r(s)e^{i\theta(s)}$ and (3.38), we obtain

$$r\kappa' + (n-1)(2\kappa + (n-3)\theta')r' = 0,$$

which gives case (5) for n = 3 and case (6) for n > 3.

The converse can be verify by direct computation. $\hfill\Box$

4. Complex extensors with parallel mean curvature vector.

Theorem 2. A complex extensor $F \otimes \iota_0^n$ of ι_0^n via a unit speed curve F in \mathbb{C}^* has parallel mean curvature vector if and only if either (1) the complex extensor is a minimal Lagrangian submanifold, or (2) F is a circle centered at the origin.

Proof. We already know that the complex extensor $F \otimes \iota_0^n$ is a non-totally geodesic Lagrangian submanifold whose second fundamental form satisfies (2.7) for some functions λ and μ with respect to some suitable orthonormal local frame field e_1, \ldots, e_n .

Since the mean curvature vector H is given by

(4.1)
$$H = \frac{1}{n} (\lambda + (n-1)\mu) J e_1,$$

the complex extensor ϕ has parallel mean curvature vector if and only if L is minimal or $\lambda + (n-1)\mu$ is a nonzero constant and $\nabla e_1 = 0$.

Now, assume that $F \otimes \iota_0^n$ is non-minimal. Then from $\nabla e_1 = 0$ we have $\omega_1^j(e_k) = 0$ for $j, k = 1, \ldots, n$. Combining this with (3.1) shows that μ is constant.

On the other hand, since $\mu = \frac{1}{2f} \sqrt{4f - f'^2}$, after differentiating μ , we find

$$(4.2) (ff'' - f'^2 + 2f)f' = 0.$$

If f' = 0, f is a positive constant. Thus, F is a circle centered at the origin; hence the complex extensor $F \otimes \iota_0^n$ has parallel mean curvature vector.

When $ff'' - f'^2 + 2f = 0$ holds, then after applying a suitable translation in s and replacing s by -s if necessary, we obtain

$$f = s^2$$
, $f = \frac{4}{b^2} \sinh^2\left(\frac{bs}{2}\right)$, or $f = \frac{4}{b^2} \sin^2\left(\frac{bs}{2}\right)$,

according to c = 0, $c = b^2 > 0$, or $c = -b^2 < 0$.

If $f = s^2$, we have $4f = f'^2$. So, the complex extensor is totally geodesic, which is a contradiction.

If $f = \frac{4}{b^2} \sinh^2(\frac{bs}{2})$ holds, we get $4f < f'^2$. This is impossible due to (3.27).

If $f = \frac{4}{b^2} \sin^2\left(\frac{bs}{2}\right)$, then we have $\sqrt{4f - f'^2} = \frac{4}{b} \sin^2\left(\frac{bs}{2}\right)$. Thus (3.30) gives $\lambda = 2\mu$. So, $F \otimes \iota_0^n$ is a Lagrangian pseudo-sphere. This is impossible, since $\nabla e_1 \neq 0$ for Lagrangian pseudo-spheres. \square

5. Remarks.

Remark 1. If a unit speed curve F satisfies $\kappa = m\theta'(s)$ for some $m \in \mathbf{R}$, then $f = \langle F, F \rangle$ satisfies

(5.1)
$$2ff'' - mf'^2 + 4(m-1)f = 0.$$

After solving this differential equation for f' we get

$$(5.2) 4f - f'^2 = \alpha f^m$$

for some $\alpha > 0$. Whenever $4f - f'^2 > 0$, we may put $\alpha = 4b^2$, b > 0. Thus, if s(f) is an anti-derivative of

$$\frac{1}{2\sqrt{f-b^2f^m}},$$

the inverse function f of s satisfies (5.1). Thus, by (3.32), we know that $F = \sqrt{f}e^{i\theta}$ with $\theta = \int_0^s b f^{\frac{n}{2}-1} ds$ is a unit speed curve satisfying $\kappa = m\theta'$.

Remark 2. Put $y_1 = f, y_2 = f'$ and $y_3 = f''$. Then equation (3.35) is equivalent to the system:

$$y'_1 = y_2, \quad y'_2 = y_3,$$

$$y'_3 = \frac{y_2}{4y_1^2(4y_1 - y_2^2)} \left\{ 4(4(n-2)n + (n^2 - 4n + 3)y_2^4 - y_3(4n - 8 + y_3))y_1^2 - 4(n-1)(2n - 4 - y_3)y_1y_2^2 \right\}.$$

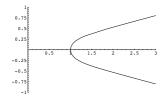


Fig. 1. $\kappa = -5\theta', \theta(0) = 0, r(0) = 1, \varphi(0) = \frac{\pi}{2}$

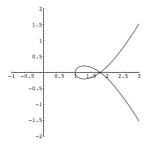


Fig. 2. $\kappa = 6r^{-4}, \theta(0) = 0, r(0) = 1, \varphi(0) = \frac{\pi}{2}$.

It follows from Picard's theorem that, for a given initial conditions: $y_1(s_0) = y_1^0, y_2(s_0) = y_2^0, y_3(s_0) = y_3^0$ at s_0 with $y_1^0 > 0$ and $4y_1^0 > y_2^0$, the initial value problem has a unique solution in some open interval containing s_0 . So, (3.35) admits infinitely many positive solutions f with $4f > f'^2$. Each f gives rise to a unit speed curve F whose curvature satisfies

$$r\kappa' + (n-1)(2\kappa + (n-3)\theta')r' = 0.$$

So, there are infinitely many Hamiltonian-stationary Lagrangian submanifolds of type (6) of Theorem 1.

Acknowledgement. The curves $F = re^{i\theta}$ related with Theorem 1 given above were produced by Prof. Yoshihiko Tazawa of Tokyo Denki University.

References

- [1] R. Aiyama, Lagrangian surfaces with circle symmetry in the complex two-space, Michigan Math. J. **52** (2004), no. 3, 491–506.
- A. Amarzaya and Y. Ohnita, Hamiltonian stability of certain minimal Lagrangian submanifolds in complex projective spaces, Tohoku Math. J. (2) 55 (2003), no. 4, 583–610.
- [3] H. Anciaux, Construction of many Hamiltonian stationary Lagrangian surfaces in Euclidean four-space, Calc. Var. Partial Differential Equations 17 (2003), no. 2, 105–120.
- [4] H. Anciaux, I. Castro and P. Romon, Lagrangian submanifolds foliated by (n-1)-spheres in \mathbf{R}^{2n} , Acta Math. Sin. (Engl. Ser.) **22** (2006), no. 4, 1197–1214.
- [5] I. Castro and B.-Y. Chen, Lagrangian surfaces in complex Euclidean plane via spherical and

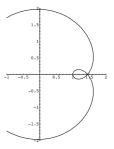


Fig. 3. $\kappa = 8r^{-4}, \theta(0) = 0, r(0) = 1, \varphi(0) = \frac{\pi}{2}$.

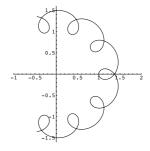


Fig. 4. $\kappa = 9r^{-4}, \theta(0) = 0, r(0) = 1, \varphi(0) = \frac{\pi}{2}$.

hyperbolic curves, Tohoku Math. J. **58** (2006), 565–579.

- [6] I. Castro and F. Urbano, Examples of unstable Hamiltonian-minimal Lagrangian tori in C², Compositio Math. 111 (1998), no. 1, 1–14.
- [7] I. Castro, H. Li and F. Urbano, Hamiltonianstationary Lagrangian submanifolds in complex space forms, Pacific J. Math. (to appear).
- [8] B.-Y. Chen, Geometry of submanifolds, Dekker, New York, 1973.
- [9] B.-Y. Chen, Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tohoku Math. J. (2) 49 (1997), no. 2, 277–297.
- [10] B.-Y. Chen, Construction of Lagrangian surfaces in complex Euclidean plane with Legendre curves, Kodai Math. J. 29 (2006), no. 1, 84–112.
- [11] B.-Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257–266.
- [12] F. Hélein and P. Romon, Hamiltonian stationary Lagrangian surfaces in \mathbb{C}^2 , Comm. Anal. Geom. 10 (2002), no. 1, 79–126.
- [13] F. Hélein and P. Romon, Weierstrass representation of Lagrangian surfaces in four-dimensional space using spinors and quaternions, Comment. Math. Helv. 75 (2000), no. 4, 668–680.
- [14] A. E. Mironov, On Hamiltonian-minimal and minimal Lagrangian submanifolds in \mathbb{C}^n and \mathbb{CP}^n , Dokl. Akad. Nauk **396** (2004), no. 2, 159–161.
- [15] Y.-G. Oh, Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds, Invent. Math. 101 (1990), no. 2, 501–519.